Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399058

RESUMO

Gold nanohole arrays, hybrid metal/dielectric metasurfaces composed of periodically arranged air holes in a thick gold film, exhibit versatile support for both localized and propagating surface plasmons. Leveraging their capabilities, particularly in surface plasmon resonance-oriented applications, demands precise optical tuning. In this study, a customized particle swarm optimization algorithm, implemented in Ansys Lumerical FDTD, was employed to optically tune gold nanohole arrays treated as bidimensional gratings following the Bragg condition. Both square and triangular array dispositions were considered. Convergence and evolution of the particle swarm optimization algorithm were studied, and a mathematical model was developed to interpret its outcomes.

2.
Adv Mater ; 35(26): e2208719, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932736

RESUMO

Optical biosensors based on plasmonic sensing schemes combine high sensitivity and selectivity with label-free detection. However, the use of bulky optical components is still hampering the possibility of obtaining miniaturized systems required for analysis in real settings. Here, a fully miniaturized optical biosensor prototype based on plasmonic detection is demonstrated, which enables fast and multiplex sensing of analytes with high- and low molecular weight (80 000 and 582 Da) as quality and safety parameters for milk: a protein (lactoferrin) and an antibiotic (streptomycin). The optical sensor is based on the smart integration of: i) miniaturized organic optoelectronic devices used as light-emitting and light-sensing elements and ii) a functionalized nanostructured plasmonic grating for highly sensitive and specific localized surface plasmon resonance (SPR) detection. The sensor provides quantitative and linear response reaching a limit of detection of 10-4 refractive index units once it is calibrated by standard solutions. Analyte-specific and rapid (15 min long) immunoassay-based detection is demonstrated for both targets. By using a custom algorithm based on principal-component analysis, a linear dose-response curve is constructed which correlates with a limit of detection (LOD) as low as 3.7 µg mL-1 for lactoferrin, thus assessing that the miniaturized optical biosensor is well-aligned with the chosen reference benchtop SPR method.


Assuntos
Técnicas Biossensoriais , Lactoferrina , Peso Molecular , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície , Limite de Detecção
3.
Materials (Basel) ; 16(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36770293

RESUMO

Plasmonic gratings are attracting huge interest in the context of realizing sensors based on surface-enhanced fluorescence. The grating features control the plasmonic modes and consequently have a strong effect on the fluorescence response. Within this framework, we focused on the use of a buffer solution flowing across the grating active surface to mimic a real measurement. The refractive index of the surrounding medium is therefore altered, with a consequent modification of the resonance conditions. The result is a shift in the spectral features of the fluorescence emission accompanied by a reshaping of the fluorescence emission in terms of spectral weight and direction.

4.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500962

RESUMO

The recent development and technological improvement in dealing with plasmonic metasurfaces has triggered a series of interesting applications related to sensing challenges. Fluorescence has been one of the most studied tools within such a context. With this in mind, we used some well characterized structures supporting plasmonic resonances to study their influence on the emission efficiency of a fluorophore. An extended optical analysis and a complementary investigation through finite-difference time-domain (FDTD) simulations have been combined to understand the coupling mechanism between the excitation of plasmonic modes and the fluorescence absorption and emission processes. The results provide evidence of the spectral shape dependence of fluorescence on the plasmonic field distribution together with a further relationship connected with the enhancement of its signal. It has made evident that the spectral region characterized by the largest relative enhancement closely corresponds to the strongest signatures of the plasmonic modes, as described by both the optical measurements and the FDTD findings.

5.
Nanomaterials (Basel) ; 10(3)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32155993

RESUMO

In the last decade, biochemical sensors have brought a disruptive breakthrough in analytical chemistry and microbiology due the advent of technologically advanced systems conceived to respond to specific applications. From the design of a multitude of different detection modalities, several classes of sensor have been developed over the years. However, to date they have been hardly used in point-of-care or in-field applications, where cost and portability are of primary concern. In the present review we report on the use of nanostructured organic and hybrid compounds in optoelectronic, electrochemical and plasmonic components as constituting elements of miniaturized and easy-to-integrate biochemical sensors. We show how the targeted design, synthesis and nanostructuring of organic and hybrid materials have enabled enormous progress not only in terms of modulation and optimization of the sensor capabilities and performance when used as active materials, but also in the architecture of the detection schemes when used as structural/packing components. With a particular focus on optoelectronic, chemical and plasmonic components for sensing, we highlight that the new concept of having highly-integrated architectures through a system-engineering approach may enable the full expression of the potential of the sensing systems in real-setting applications in terms of fast-response, high sensitivity and multiplexity at low-cost and ease of portability.

6.
Materials (Basel) ; 13(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164146

RESUMO

Sequential plasma processes combined with specific lithographic methods allow for the fabrication of advanced material structures. In the present work, we used self-assembled colloidal monolayers as lithographic structures for the conformation of ordered Si submicrometer pillars by reactive ion etching. We explored different discharge conditions to optimize the Si pillar geometry. Selected structures were further decorated with gold by conventional sputtering, prior to colloidal monolayer lift-off. The resulting structures consist of a gold crown, that is, a cylindrical coating on the edge of the Si pillar and a cavity on top. We analysed the Au structures in terms of electronic properties by using X-ray absorption spectroscopy (XAS) prior to and after post-processing with thermal annealing at 300 °C and/or interaction with a gold etchant solution (KI). The angular dependent analysis of the plasmonic properties was studied with Fourier transformed UV-vis measurements. Certain conditions were selected to perform a surface enhanced Raman spectroscopy (SERS) evaluation of these platforms with two model dyes, prior to confirming the potential interest for a well-resolved analysis of filtered blood plasma.

7.
Materials (Basel) ; 12(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683526

RESUMO

Random assemblies of vertically aligned core-shell GaAs-AlGaAs nanowires displayed an optical response dominated by strong oscillations of the reflected light as a function of the incident angle. In particular, angle-resolved specular reflectance measurements showed the occurrence of periodic modulations in the polarization-resolved spectra of reflected light for a surprisingly wide range of incident angles. Numerical simulations allowed for identifying the geometrical features of the core-shell nanowires leading to the observed oscillatory effects in terms of core and shell thickness as well as the tapering of the nanostructure. The present results indicate that randomly displaced ensembles of nanoscale heterostructures made of III-V semiconductors can operate as optical metamirrors, with potential for sensing applications.

8.
Nanomaterials (Basel) ; 9(7)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315233

RESUMO

Photonic and plasmonic systems have been intensively studied as an effective means to modify and enhance the electromagnetic field. In recent years hybrid plasmonic-photonic systems have been investigated as a promising solution for enhancing light-matter interaction. In the present work we present a hybrid structure obtained by growing a plasmonic 2D nanograting on top of a porous silicon distributed Bragg reflector. Particular attention has been devoted to the morphological characterization of these systems. Electron microscopy images allowed us to determine the geometrical parameters of the structure. The matching of the optical response of both components has been studied. Results indicate an interaction between the plasmonic and the photonic parts of the system, which results in a localization of the electric field profile.

9.
Phys Chem Chem Phys ; 18(20): 14086-93, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27158698

RESUMO

An all-polymer photonic structure constituted by a distributed Bragg reflector topped with an ultrathin fluorescent polymer film has been studied. A Bloch surface wave resonance has been exploited to improve pumping efficiency. A strongly polarization and angle dependent fluorescence signal is found with respect to the light pumping beam and the emitted wavelength. Matching the most favorable condition for the pump coupling and the collection geometry, the signal obtained from the structure appears to be two orders of magnitude larger than the one of the bare emitting film.

10.
Beilstein J Nanotechnol ; 6: 500-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821692

RESUMO

Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol-gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip.

11.
J Biomed Opt ; 19(1): 17006, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24474511

RESUMO

This paper describes a new multiplexed label-free biosensor. The detection technology is based on nanostructured gold-polymer surfaces. These surfaces support surface plasmon resonance modes that can be probed by a miniaturized optical setup. The optical characterization of the sensing chip shows the sensitivity and the limit-of-detection to refractive index changes. Moreover, by studying the progressive adhesion of molecular monolayers of polyelectrolytes, the decay of the plasmonic mode electric field above the surface has been reconstructed. A multiplexed label-free biosensing device is then described and characterized in terms of sensitivity, lateral resolution, and sensitivity to a model biological assay. The sensitivity in imaging mode of the device is of the order of 10-6 refractive index units, while the measured lateral resolution is 6.25 µm within a field of view of several tenths of mm2, making the instrument unique in terms of multiplexing capability. Finally, the proof-of-concept application of the technology as a point-of-care diagnostic tool for an inflammatory marker is demonstrated.


Assuntos
Técnicas Biossensoriais/instrumentação , Óptica e Fotônica , Sepse/diagnóstico , Animais , Calibragem , Eletrólitos , Ouro/química , Humanos , Inflamação , Nanoestruturas , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Polímeros/química , Ratos , Refratometria , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície/instrumentação
12.
J Phys Chem Lett ; 5(17): 2935-40, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26278239

RESUMO

Ultrathin films of silica realized by sol-gel synthesis and dip-coating techniques were successfully applied to predefined metal/polymer plasmonic nanostructures to spectrally tune their resonance modes and to increase their sensitivity to local refractive index changes. Plasmon resonance spectral shifts up to 100 nm with slope efficiencies of ∼8 nm/nm for increasing layer thickness were attained. In the ultrathin layer regime (<10 nm), which could be reached by suitable dilution of the silica precursors and optimization of the deposition speed, the sensitivity of the main plasmonic resonance to refractive index changes in aqueous solution could be increased by over 50% with respect to the bare plasmonic chip. Numerical simulations supported experimental data and unveiled the mechanism responsible for the optical sensitivity gain, proving an effective tool in the design of high-performance plasmonic sensors.

13.
Phys Chem Chem Phys ; 11(48): 11515-9, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20024423

RESUMO

In this work, we report on the optical properties and amplified spontaneous emissions (ASE) of polystyrene opals engineered with planar structural defects containing a conjugated polymer emitter. Defects in opals give rise to allowed states inside the photonic stop band, which are probed by transmittance and reflectance spectroscopy. The emission spectrum of the polymer embedded in the defect layer is strongly modified and fingerprints of defect states located inside the stop band are recognized. Amplified spontaneous emission for these engineered photonic crystals is clearly observed.

14.
Chemphyschem ; 10(8): 1284-90, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19405062

RESUMO

Ring the changes: Experimental Raman spectra of fluorinated and non-fluorinated polyphenylenevinylenes are assigned according to quantum chemical calculations for oligomer model systems [picture: see text]. Characteristic differences in the spectra can be traced back to strong inter-ring distortion of the fluorinated compounds.The Raman spectrum of poly{2-methoxy-5-[(2-ethylhexyl)oxy]-1,4-phenylenedifluorovinylene} (MEH-PPDFV) is reported and compared with that of a well-known non-fluorinated reference polymer, namely poly{2-methoxy-5-[(2-ethylhexyl)oxy]-1,4-phenylenevinylene} (MEH-PPV). The Raman spectra of both polymers are assigned on the basis of density functional theory calculations of the corresponding oligomers. The main differences between vinylene fluorinated and non-fluorinated structures deal with the intensity, frequency shift and broadening of C--C vinylene stretching. Additional differences concern the relative intensities of C-C phenylene and vinylene stretching as well as the deformation modes in the range 1250-1350 cm(-1). It is shown that these effects are due to the larger distortion from planarity of the fluorinated polymer, compared with the non-fluorinated counterpart, induced by repulsive interactions between the fluorine atoms on the vinylene units and the oxygen atoms of the alkoxy groups on the aromatic rings.

15.
Appl Opt ; 42(19): 3910-4, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12868830

RESUMO

We report on a technique for measuring the refractive indices of nonabsorbing media over a broad spectral range from 0.5 to 5 microm. White-light interferometry based on a double-interferometer system consisting of a fixed Mach-Zehnder interferometer and a Fourier-transform spectrometer is used for direct measurement of the absolute rotation-dependent phase shift induced by an optical element. Refractive index n(lambda) over the whole investigated spectral range is thus obtained directly to an accuracy of 10(-4) without the need for any specific assumption about dispersion. Results for synthetic fused silica are presented and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...