Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446742

RESUMO

With sensitivity being the Achilles' heel of nuclear magnetic resonance (NMR), the superior mass sensitivity offered by micro-coils can be an excellent choice for tiny, mass limited samples such as eggs and small organisms. Recently, complementary metal oxide semiconductor (CMOS)-based micro-coil transceivers have been reported and demonstrate excellent mass sensitivity. However, the ability of broadband CMOS micro-coils to study heteronuclei has yet to be investigated, and here their potential is explored within the lens of environmental research. Eleven nuclei including 7Li, 19F, 31P and, 205Tl were studied and detection limits in the low to mid picomole range were found for an extended experiment. Further, two environmentally relevant samples (a sprouting broccoli seed and a D. magna egg) were successfully studied using the CMOS micro-coil system. 13C NMR was used to help resolve broad signals in the 1H spectrum of the 13C enriched broccoli seed, and steady state free precession was used to improve the signal-to-noise ratio by a factor of six. 19F NMR was used to track fluorinated contaminants in a single D. magna egg, showing potential for studying egg-pollutant interactions. Overall, CMOS micro-coil NMR demonstrates significant promise in environmental research, especially when the future potential to scale to multiple coil arrays (greatly improving throughput) is considered.


Assuntos
Poluentes Ambientais , Flúor , Espectroscopia de Ressonância Magnética , Óxidos , Semicondutores , Espectroscopia de Ressonância Magnética/métodos , Brassica/química , Sementes/química , Daphnia magna , Animais , Poluentes Ambientais/análise
2.
J Magn Reson ; 335: 107142, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34999310

RESUMO

The resolving power, chemical sensitivity and non-invasive nature of NMR have made it an established technique for in vivo studies of large organisms both for research and clinical applications. NMR would clearly be beneficial for analysis of entities at the microscopic scale of about 1 nL (the nanoliter scale), typical of early development of mammalian embryos, microtissues and organoids: the scale where the building blocks of complex organisms could be observed. However, the handling of such small samples (about 100 µm) and sensitivity issues have prevented a widespread adoption of NMR. In this article we show how these limitations can be overcome to obtain NMR spectra of a mammalian embryo in its early stage. To achieve this we employ ultra-compact micro-chip technologies in combination with 3D-printed micro-structures. Such device is packaged for use as plug & play sensor and it shows sufficient sensitivity to resolve NMR signals from individual bovine pre-implantation embryos. The embryos in this study are obtained through In Vitro Fertilization (IVF) techniques, transported cryopreserved to the NMR laboratory, and measured shortly after thawing. In less than 1 h these spherical samples of just 130-190 µm produce distinct spectral peaks, largely originating from lipids contained inside them. We further observe how the spectra vary from one sample to another despite their optical and morphological similarities, suggesting that the method can further develop into a non-invasive embryo assay for selection prior to embryo transfer.


Assuntos
Transferência Embrionária , Embrião de Mamíferos , Animais , Bovinos , Transferência Embrionária/métodos , Desenvolvimento Embrionário , Fertilização in vitro , Espectroscopia de Ressonância Magnética/métodos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...