Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 20(8): 1089-1122, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30047962

RESUMO

Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.


Assuntos
Bactérias/efeitos da radiação , Modelos Teóricos , Luz Solar , Vírus/efeitos da radiação , Fotoquímica , Microbiologia da Água
2.
Nat Nanotechnol ; 11(12): 1098-1104, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27525474

RESUMO

Solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (∼50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS2 showed a ∼15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l-1) under simulated visible light.


Assuntos
Dissulfetos/química , Molibdênio/química , Nanoestruturas/química , Nanotecnologia/métodos , Purificação da Água/instrumentação , Purificação da Água/métodos , Catálise , Cobre/química , Desinfecção/instrumentação , Desinfecção/métodos , Desenho de Equipamento , Ouro/química , Luz , Espectroscopia Fotoeletrônica , Espécies Reativas de Oxigênio , Microbiologia da Água
3.
Environ Sci Technol ; 50(10): 5068-76, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27119980

RESUMO

The decay of sewage-sourced Escherichia coli and enterococci was measured at multiple depths in a freshwater marsh, a brackish water lagoon, and a marine site, all located in California. The marine site had very clear water, while the waters from the marsh and lagoon contained colored dissolved organic matter that not only blocked light but also produced reactive oxygen species. First order decay rate constants of both enterococci and E. coli were between 1 and 2 d(-1) under low light conditions and as high as 6 d(-1) under high light conditions. First order decay rate constants were well correlated to the daily average UVB light intensity corrected for light screening incorporating water absorbance and depth, suggesting endogenous photoinactivation is a major pathway for bacterial decay. Additional laboratory experiments demonstrated the presence of colored dissolved organic matter in marsh water enhanced photoinactivation of a laboratory strain of Enterococcus faecalis, but depressed photoinactivation of sewage-sourced enterococci and E. coli after correcting for UVB light screening, suggesting that although the exogenous indirect photoinactivation mechanism may be active against Ent. faecalis, it is not for the sewage-source organisms. A simple linear regression model based on UVB light intensity appears to be a useful tool for predicting inactivation rate constants in natural waters of any depth and absorbance.


Assuntos
Enterococcus , Escherichia coli , Luz Solar , Água , Microbiologia da Água
4.
Environ Sci Technol ; 50(10): 5050-9, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27121126

RESUMO

It is presently unknown to what extent the endogenous direct, endogenous indirect, and exogenous indirect mechanisms contribute to bacterial photoinactivation in natural surface waters. In this study, we investigated the importance of the exogenous indirect mechanism by conducting photoinactivation experiments with eight health-relevant bacterial species (Bacteroides thetaiotaomicron, Campylobacter jejuni, Enterococcus faecalis, Escherichia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococcus aureus, and Streptococcus bovis). We used three synthetic photosensitizers (methylene blue, rose bengal, and nitrite) and two model natural photosensitizers (Suwannee River natural organic matter and dissolved organic matter isolated from a wastewater treatment wetland) that generated singlet oxygen and hydroxyl radical. B. thetaiotaomicron had larger first order rate constants than all other organisms under all conditions tested. The presence of the synthetic photosensitizers generally enhanced photoinactivation of Gram-positive facultative anaerobes (Ent. faecalis, Staph. aureus, and Strep. bovis). Among Gram-negative bacteria, only methylene blue with E. coli K12 and rose bengal with C. jejuni showed an enhancing effect. The presence of model natural photosensitizers either reduced or did not affect photoinactivation rate constants. Our findings highlight the importance of the cellular membrane and photosensitizer properties in modulating the contribution of the exogenous indirect mechanism to the overall bacterial photoinactivation.


Assuntos
Bactérias Gram-Negativas , Staphylococcus aureus , Azul de Metileno/química , Fármacos Fotossensibilizantes/química , Rosa Bengala
5.
Nano Lett ; 13(9): 4288-93, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23987737

RESUMO

High-efficiency, affordable, and low energy water disinfection methods are in great need to prevent diarrheal illness, which is one of the top five leading causes of death over the world. Traditional water disinfection methods have drawbacks including carcinogenic disinfection byproducts formation, energy and time intensiveness, and pathogen recovery. Here, we report an innovative method that achieves high-efficiency water disinfection by introducing nanomaterial-assisted electroporation implemented by a conducting nanosponge filtration device. The use of one-dimensional (1D) nanomaterials allows electroporation to occur at only several volts, which is 2 to 3 orders of magnitude lower than that in traditional electroporation applications. The disinfection mechanism of electroporation prevents harmful byproduct formation and ensures a fast treatment speed of 15,000 L/(h·m(2)), which is equal to a contact time of 1 s. The conducting nanosponge made from low-cost polyurethane sponge coated with carbon nanotubes and silver nanowires ensures the device's affordability. This method achieves more than 6 log (99.9999%) removal of four model bacteria, including Escherichia coli, Salmonella enterica Typhimirium, Enterococcus faecalis, and Bacillus subtilis, and more than 2 log (99%) removal of one model virus, bacteriophage MS2, with a low energy consumption of only 100 J/L.


Assuntos
Bactérias/efeitos dos fármacos , Nanoestruturas/uso terapêutico , Microbiologia da Água , Bactérias/patogenicidade , Eletroporação , Nanoestruturas/química , Nanotubos de Carbono/química , Nanofios/química , Vírus/efeitos dos fármacos , Vírus/patogenicidade , Água
6.
Appl Environ Microbiol ; 78(2): 305-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081569

RESUMO

Enterococcus species composition was determined each hour for 72 h at a polluted marine beach in Avalon, Santa Catalina Island, CA. Species composition during the day was significantly different from that at night, based on an analysis of similarity. Enterococcus faecium and E. faecalis were more prevalent at night than during the day, while E. hirae and other Enterococcus species were more prevalent during the day than the night. Enterococcus spp. containing a yellow pigment were more common during the day than the night, suggesting that the pigmented phenotype may offer a competitive advantage under sunlit conditions. A laboratory microcosm experiment established that the pigmented E. casseliflavus isolate and a pigmented E. faecalis isolate recovered from the field site decay slower than a nonpigmented E. faecalis isolate in a solar simulator in simulated, clear seawater. This further supports the idea that the yellow carotenoid pigment in Enterococcus provides protection under sunlit conditions. The findings are in accordance with previous work with other carotenoid-containing nonphotosynthetic and photosynthetic bacteria that suggests that the carotenoid is able to quench reactive oxygen species capable of causing photoinactivation and photostress. The results suggest that using enterococcal species composition as a microbial source tracking tool may be hindered by the differential environmental persistence of pigmented and nonpigmented enterococci.


Assuntos
Biota , Carotenoides/metabolismo , Enterococcus/classificação , Enterococcus/efeitos da radiação , Pigmentos Biológicos/metabolismo , Água do Mar/microbiologia , Poluição da Água , Enterococcus/crescimento & desenvolvimento , Enterococcus/isolamento & purificação , Oceanos e Mares , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...