Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 62(8): 1842-51, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21632066

RESUMO

A management proposal aims to partly remove a WWII military causeway at Palmyra Atoll to improve lagoon water circulation and alleviate sedimentation stress on the southeast backreef, an area of high coral cover and diversity. This action could result in a shift in sedimentation across reef sites. To provide management advice, we quantified the proximate environmental factors driving scleractinian coral cover and community patterns at Palmyra. The proportion of fine sedimentation was the optimal predictor of coral cover and changes in community structure, explaining 23.7% and 24.7% of the variation between sites, respectively. Scleractinian coral cover was negatively correlated with increases in fine sedimentation. Removing the causeway could negatively affect the Montipora corals that dominate the western reef terrace, as this genus was negatively correlated with levels of fine sedimentation. The tolerance limits of corals, and sediment re-distribution patterns, should be determined prior to complete removal of the causeway.


Assuntos
Antozoários/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Militares , Animais , Antozoários/classificação , Geografia , Oceano Pacífico , II Guerra Mundial
2.
PLoS One ; 5(12): e15021, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21151995

RESUMO

M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsß, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsß intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity.


Assuntos
Antozoários/genética , Antozoários/fisiologia , DNA/metabolismo , Animais , Teorema de Bayes , Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Evolução Molecular , Variação Genética , Genética Populacional , Haplótipos , Havaí , Hibridização de Ácido Nucleico , Filogenia , Especificidade da Espécie
3.
Mar Pollut Bull ; 60(9): 1467-76, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20541228

RESUMO

A mild bleaching event (9.2% prevalence) at Palmyra Atoll occurred in response to the 2009 ENSO, when mean water temperature reached 29.8-30.1 degrees C. Prevalence among both abundant and sparse taxa varied with no clear pattern in susceptibility relating to coral morphology. Seven taxon-specific models showed that turbidity exacerbated while prior exposure to higher background temperatures alleviated bleaching, with these predictors explaining an average 16.3% and 11.5% variation in prevalence patterns, respectively. Positive associations occurred between bleaching prevalence and both immediate temperature during the bleaching event (average 8.4% variation explained) and increased sand cover (average 3.7%). Despite these associations, mean unexplained variation in prevalence equalled 59%. Lower bleaching prevalence in areas experiencing higher background temperatures suggests acclimation to temperature stress among several coral genera, while WWII modifications may still be impacting the reefs via shoreline sediment re-distribution and increased turbidity, exacerbating coral bleaching susceptibility during periods of high temperature stress.


Assuntos
Antozoários/fisiologia , Modelos Biológicos , Animais , Ecossistema , Oceano Pacífico , Estresse Fisiológico , Temperatura
4.
PLoS One ; 5(6): e10950, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20539746

RESUMO

A series of surveys were carried out to characterize the physical and biological parameters of the Millennium Atoll lagoon during a research expedition in April of 2009. Millennium is a remote coral atoll in the Central Pacific belonging to the Republic of Kiribati, and a member of the Southern Line Islands chain. The atoll is among the few remaining coral reef ecosystems that are relatively pristine. The lagoon is highly enclosed, and was characterized by reticulate patch and line reefs throughout the center of the lagoon as well as perimeter reefs around the rim of the atoll. The depth reached a maximum of 33.3 m in the central region of the lagoon, and averaged between 8.8 and 13.7 m in most of the pools. The deepest areas were found to harbor large platforms of Favia matthaii, which presumably provided a base upon which the dominant corals (Acropora spp.) grew to form the reticulate reef structure. The benthic algal communities consisted mainly of crustose coralline algae (CCA), microfilamentous turf algae and isolated patches of Halimeda spp. and Caulerpa spp. Fish species richness in the lagoon was half of that observed on the adjacent fore reef. The lagoon is likely an important nursery habitat for a number of important fisheries species including the blacktip reef shark and Napoleon wrasse, which are heavily exploited elsewhere around the world but were common in the lagoon at Millennium. The lagoon also supports an abundance of giant clams (Tridacna maxima). Millennium lagoon provides an excellent reference of a relatively undisturbed coral atoll. As with most coral reefs around the world, the lagoon communities of Millennium may be threatened by climate change and associated warming, acidification and sea level rise, as well as sporadic local resource exploitation which is difficult to monitor and enforce because of the atoll's remote location. While the remote nature of Millennium has allowed it to remain one of the few nearly pristine coral reef ecosystems in the world, it is imperative that this ecosystem receives protection so that it may survive for future generations.


Assuntos
Ecossistema , Animais , Biodiversidade , Ilhas do Pacífico
5.
PLoS One ; 3(8): e2989, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18714355

RESUMO

Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Various reasons have been proposed to explain this phenomenon including increased human disturbance, pollution, or changes in coral reef biota that serve a major ecological function such as depletion of grazers. However, pinpointing the actual factors potentially responsible can be problematic. Here we show a phase shift from coral to the corallimorpharian Rhodactis howesii associated with a long line vessel that wrecked in 1991 on an isolated atoll (Palmyra) in the central Pacific Ocean. We documented high densities of R. howesii near the ship that progressively decreased with distance from the ship whereas R. howesii were rare to absent in other parts of the atoll. We also confirmed high densities of R. howesii around several buoys recently installed on the atoll in 2001. This is the first time that a phase shift on a coral reef has been unambiguously associated with man-made structures. This association was made, in part, because of the remoteness of Palmyra and its recent history of minimal human habitation or impact. Phase shifts can have long-term negative ramification for coral reefs, and eradication of organisms responsible for phase shifts in marine ecosystems can be difficult, particularly if such organisms cover a large area. The extensive R. howesii invasion and subsequent loss of coral reef habitat at Palmyra also highlights the importance of rapid removal of shipwrecks on corals reefs to mitigate the potential of reef overgrowth by invasives.


Assuntos
Antozoários/classificação , Navios , Acidentes , Animais , Antozoários/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Ecossistema , Geografia , Havaí , Humanos , Biologia Marinha , Parasitos , Densidade Demográfica
6.
PLoS One ; 3(2): e1548, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18301734

RESUMO

Effective conservation requires rigorous baselines of pristine conditions to assess the impacts of human activities and to evaluate the efficacy of management. Most coral reefs are moderately to severely degraded by local human activities such as fishing and pollution as well as global change, hence it is difficult to separate local from global effects. To this end, we surveyed coral reefs on uninhabited atolls in the northern Line Islands to provide a baseline of reef community structure, and on increasingly populated atolls to document changes associated with human activities. We found that top predators and reef-building organisms dominated unpopulated Kingman and Palmyra, while small planktivorous fishes and fleshy algae dominated the populated atolls of Tabuaeran and Kiritimati. Sharks and other top predators overwhelmed the fish assemblages on Kingman and Palmyra so that the biomass pyramid was inverted (top-heavy). In contrast, the biomass pyramid at Tabuaeran and Kiritimati exhibited the typical bottom-heavy pattern. Reefs without people exhibited less coral disease and greater coral recruitment relative to more inhabited reefs. Thus, protection from overfishing and pollution appears to increase the resilience of reef ecosystems to the effects of global warming.


Assuntos
Antozoários , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Geografia , Animais , Eucariotos , Peixes , Efeito Estufa , Poluentes da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...