Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Chem Phys ; 16(9): 5969-5991, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29681921

RESUMO

Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with ∼25 × 25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50% of observed RONO2 in surface air, and we find that another 10% is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10% of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60% of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20% by photolysis to recycle NOx and 15% by dry deposition. RONO2 production accounts for 20% of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline.

2.
Atmos Chem Phys ; 16(3): 1603-1618, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32742280

RESUMO

Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.

3.
Atmos Chem Phys ; 12(14): 6219-6235, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33688332

RESUMO

We use 2005-2009 satellite observations of formaldehyde (HCHO) columns from the OMI instrument to infer biogenic isoprene emissions at monthly 1 × 1° resolution over the African continent. Our work includes new approaches to remove biomass burning influences using OMI absorbing aerosol optical depth data (to account for transport of fire plumes) and anthropogenic influences using AATSR satellite data for persistent small-flame fires (gas flaring). The resulting biogenic HCHO columns (ΩHCHO) from OMI follow closely the distribution of vegetation patterns in Africa. We infer isoprene emission (E ISOP) from the local sensitivity S = ΔΩHCHO / ΔE ISOP derived with the GEOS-Chem chemical transport model using two alternate isoprene oxidation mechanisms, and verify the validity of this approach using AMMA aircraft observations over West Africa and a longitudinal transect across central Africa. Displacement error (smearing) is diagnosed by anomalously high values of S and the corresponding data are removed. We find significant sensitivity of S to NOx under low-NOx conditions that we fit to a linear function of tropospheric column NO2. We estimate a 40% error in our inferred isoprene emissions under high-NOx conditions and 40-90% under low-NOx conditions. Our results suggest that isoprene emission from the central African rainforest is much lower than estimated by the state-of-the-science MEGAN inventory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...