Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 8(2): veac078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090771

RESUMO

The Omicron severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant led to a dramatic global epidemic wave following detection in South Africa in November 2021. The BA.1 Omicron lineage was dominant and responsible for most SARS-CoV-2 outbreaks in countries around the world during December 2021-January 2022, while other Omicron lineages, including BA.2, accounted for the minority of global isolates. Here, we describe the Omicron wave in the Philippines by analysing genomic data. Our results identify the presence of both BA.1 and BA.2 lineages in the Philippines in December 2021, before cases surged in January 2022. We infer that only the BA.2 lineage underwent sustained transmission in the country, with an estimated emergence around 18 November 2021 (95 per cent highest posterior density: 6-28 November), while despite multiple introductions, BA.1 transmission remained limited. These results suggest that the Philippines was one of the earliest areas affected by BA.2 and reiterate the importance of whole genome sequencing for monitoring outbreaks.

2.
Dis Aquat Organ ; 150: 145-151, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35979988

RESUMO

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a World Organization for Animal Health (OIE)-classified notifiable crustacean disease. There is limited information on the current status of IHHNV in the Philippines. Thus, this research focuses on collecting samples from various municipality markets of known shrimp producers in Central Luzon to provide an update on the status of IHHNV. These samples were subjected to IHHNV detection using PCR. Results showed that 56 out of the 276 (~20%) samples were positive for IHHNV. This indicates that IHHNV persists in Philippine shrimps despite preventive measures such as testing of broodstock. Furthermore, the sequences of the isolates acquired from different municipalities reveal a high degree of similarity, suggesting transboundary movement of the infection. Our findings also support research that demonstrated a strong link between IHHNV strains in the western hemisphere and those in the Philippines. Our data suggest that farm-monitoring processes must be tightened and strictly implemented to prevent the spread of IHHNV.


Assuntos
Densovirinae , Penaeidae , Animais , Densovirinae/genética , Filipinas/epidemiologia , Filogenia , Prevalência
4.
Sci Rep ; 10(1): 787, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964916

RESUMO

While Vibrio parahaemolyticus (VPAHPND) has been identified as the cause of early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) in shrimp, mechanisms of host response remain unknown. Understanding these processes is important to improve farming practices because this understanding will help to develop methods to enhance shrimp immunity. Pre-treatment of shrimp with 5-minute chronic non-lethal heat stress (NLHS) for 7 days was found to significantly increase Litopenaeus vannamei survival against VPAHPND infection. To elucidate the mechanism involved, mRNA and miRNA expression profiles from the hemocyte of L. vannamei challenged with VPAHPND after NLHS with corresponding control conditions were determined by RNA-Seq. A total of 2,664 mRNAs and 41 miRNAs were differentially expressed after the NLHS treatment and VPAHPND challenge. A miRNA-mRNA regulatory network of differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) was subsequently constructed and the interactions of DEMs in regulating the NLHS-induced immune-related pathways were identified. Transcriptomic data revealed that miRNA and mRNA interactions contribute to the modulation of NLHS-induced immune responses, such as the prophenoloxidase-activating system, hemocyte homeostasis, and antimicrobial peptide production, and these responses enhance VPAHPND resistance in L. vannamei.


Assuntos
Perfilação da Expressão Gênica/veterinária , MicroRNAs/genética , Penaeidae/parasitologia , RNA Mensageiro/genética , Vibrio parahaemolyticus/imunologia , Animais , Resistência à Doença , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Resposta ao Choque Térmico , Imunidade Inata , Penaeidae/genética , Penaeidae/imunologia , Análise de Sequência de RNA/veterinária
5.
Fish Shellfish Immunol ; 81: 284-296, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29966688

RESUMO

While toxin-harboring Vibrio parahaemolyticus has been previously established as the causative agent of early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) in shrimp, information on the mechanistic processes that happen in the host during infection is still lacking. Here, we examined the expression responses of the shrimp hemocyte transcriptome to V. parahaemolyticus AHPND (VPAHPND) by RNA sequencing (RNA-seq). Using libraries (SRA accession number SRP137285) prepared from shrimp hemocytes under experimental conditions, a reference library was de novo assembled for gene expression analysis of VPAHPND-challenged samples at 0, 3/6, and 48 h post infection (hpi). Using the library from 0-hpi as the control, 359 transcripts were found to be differentially expressed in the 3/6-hpi library, while 429 were differentially expressed in the 48-hpi library. The expression patterns reported in the RNA-seq of 9 representative genes such as anti-lipopolysaccharide factor (LvALF), crustin p (CRU), serpin 3 (SER), C-type lectin 3 (CTL), clottable protein 2 (CLO), mitogen-activated protein kinase kinase 4 (MKK4), P38 mitogen-activated protein kinase (P38), protein kinase A regulatory subunit 1 (PKA) and DNAJ homolog subfamily C member 1-like (DNJ) were validated by qRT-PCR. The expression of these genes was also analyzed in shrimp that were injected with the partially purified VPAHPND toxin. A VPAHPND toxin-responsive gene, LvALF was identified, and its function was characterized by RNA interference. LvALF knockdown resulted in significantly rapid increase of shrimp mortality caused by toxin injection. Protein-protein interaction analysis by molecular docking suggested that LvALF possibly neutralizes VPAHPND toxin through its LPS-binding domain. The data generated in this study provide preliminary insights into the differences in the immune response of shrimp to the bacterial and toxic aspect of VPAHPND as a disease.


Assuntos
Toxinas Bacterianas/toxicidade , Hemócitos/efeitos dos fármacos , Penaeidae/genética , Penaeidae/imunologia , Transcriptoma/efeitos dos fármacos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Hemócitos/imunologia , Penaeidae/microbiologia , Vibrio parahaemolyticus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...