Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36983460

RESUMO

For about a decade, olive groves in Apulia (Southern Italy) have been progressively destroyed by Olive Quick Decline Syndrome (OQDS), a disease caused by the bacterium Xylella fastidiosa subsp. pauca (Xfp). Recently, we described an additional wilting syndrome affecting olive trees in that area. The botryosphaeriaceous fungus Neofusicoccum mediterraneum was found associated with the diseased trees, and its high virulence toward olive trees was demonstrated. Given the common features with Branch and Twig Dieback (BTD) of olive tree, occurring in Spain and California, we suggested that the observed syndrome was BTD. During our first survey, we also found a botryosphaeriaceous species other than N. mediterraneum. In the present article, we report the morphological and molecular characterization of this fungal species which we identified as Neofusicoccum stellenboschiana. In the study, we also included for comparison additional N. stellenboschiana isolates obtained from olive trees in Latium and Tuscany region (Central Italy). The occurrence of N. stellenboschiana in olive trees is reported here for the first time in the northern hemisphere. The pathogenicity and virulence were tested in nine inoculation trials, where the Apulian N. stellenboschiana isolate was compared with the isolate from Latium and with the Apulian isolate of N. mediterraneum. Both isolates of N. stellenboschiana proved pathogenic to olive trees. They caused evident bark canker and wood discolouration when inoculated at the base of the stem of two/three-year-old trees and on one-year-old twigs. However, virulence of N. stellenboschiana was significantly lower, though still remarkable, compared with N. mediterraneum in term of necrosis progression in the bark and the wood and capacity of wilting the twigs. Virulence of N. stellenboschiana and N. mediterraneum did not substantially change when inoculations were performed in spring/summer and in autumn, suggesting that these fungal species have the potential to infect and damage olive trees in all seasons. The high thermotolerance of N. stellenboschiana was also revealed with in vitro growth and survival tests. The high virulence of these Botryosphaeriaceae species highlights their contribution in BTD aetiology and the necessity to investigate right away their diffusion and, possibly, the role of additional factors other than Xfp in the general decline of olive groves in Apulia. Hence the importance of assessing the degree of overlap of BTD/Botryosphariaceae with OQDS/Xfp is discussed.

2.
Pathogens ; 11(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35056001

RESUMO

Olive trees are infected and damaged by Botryosphaeriaceae fungi in various countries. The botryosphaeriaceous fungus Neofusicoccum mediterraneum is highly aggressive and is a major concern for olive groves in Spain and California (USA), where it causes 'branch and twig dieback' characterized by wood discoloration, bark canker, and canopy blight. During surveys of olive groves in Apulia (southern Italy), we noticed that-in some areas-trees were heavily affected by severe branch and twig dieback. In addition, chlorosis and the appearance of red-bronze patches on the leaf preceded the wilting of the foliage, with necrotic leaves persisting on the twigs. Given the severity of the manifestation in zones also subject to olive quick decline syndrome (OQDS) caused by Xylella fastidiosa subsp. pauca, we investigated the etiology and provide indications for differentiating the symptoms from OQDS. Isolation from diseased wood samples revealed a mycete, which was morphologically and molecularly identified as N. mediterraneum. The pathogenicity tests clearly showed that this fungus is able to cause the natural symptoms. Therefore, also considering the low number of tested samples, N. mediterraneum is a potential causal agent of the observed disease. Specifically, inoculation of the twigs caused complete wilting in two to three weeks, while inoculation at the base of the stem caused severe girdling wedge-shaped cankers. The growth rate of the fungus in in vitro tests was progressively higher from 10 to 30 °C, failing to grow at higher temperatures, but keeping its viability even after prolonged exposure at 50 °C. The capacity of the isolate to produce catenulate chlamydospores, which is novel for the species, highlights the possibility of a new morphological strain within N. mediterraneum. Further investigations are ongoing to verify whether additional fungal species are involved in this symptomatology.

3.
Plants (Basel) ; 8(5)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035723

RESUMO

Xylella fastidiosa subsp. pauca is a xylem-limited bacterial phytopathogen currently found associated on many hectares with the "olive quick decline syndrome" in the Apulia region (Southern Italy), and the cultivars Ogliarola salentina and Cellina di Nardò result in being particularly sensitive to the disease. In order to find compounds showing the capability of reducing the population cell density of the pathogen within the leaves, we tested, in some olive orchards naturally-infected by the bacterium, a zinc-copper-citric acid biocomplex, namely Dentamet®, by spraying it to the crown, once per month, during spring and summer. The occurrence of the pathogen in the four olive orchards chosen for the trial was molecularly assessed. A 1H NMR metabolomic approach, in conjunction with a multivariate statistical analysis, was applied to investigate the metabolic pattern of both infected and treated adult olive cultivars, Ogliarola salentina and Cellina di Nardò trees, in two sampling periods, performed during the first year of the trial. For both cultivars and sampling periods, the orthogonal partial least squares discriminant analysis (OPLS-DA) gave good models of separation according to the treatment application. In both cultivars, some metabolites such as quinic acid, the aldehydic form of oleoeuropein, ligstroside and phenolic compounds, were consistently found as discriminative for the untreated olive trees in comparison with the Dentamet®-treated trees. Quinic acid, a precursor of lignin, was confirmed as a disease biomarker for the olive trees infected by X. fastidiosa subsp. pauca. When treated with Dentamet®, the two cultivars showed a distinct response. A consistent increase in malic acid was observed for the Ogliarola salentina trees, whereas in the Cellina di Nardò trees the treatments attenuate the metabolic response to the infection. To note that in Cellina di Nardò trees at the first sampling, an increase in γ-aminobutyric acid (GABA) was observed. This study highlights how the infection incited by X. fastidiosa subsp. pauca strongly modifies the overall metabolism of olive trees, and how a zinc-copper-citric acid biocomplex can induce an early re-programming of the metabolic pathways in the infected trees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...