Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 49(2): 497-511, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36328889

RESUMO

Ultrasound phantoms mimic the acoustic and mechanical properties of native tissues. Polyvinyl alcohol (PVA) phantoms are used extensively as models for validating ultrasound elastography approaches. However, the viscous properties of PVA phantoms have not been investigated adequately. Glycerol is a viscous liquid that has been reported to increase the speed of sound of phantoms. This study aims to assess the acoustic and viscoelastic properties of PVA phantoms and PVA mixed with glycerol at varying concentrations. The phantoms were fabricated with 10% w/v PVA in water with varying concentrations of glycerol (10%, 15% and 20% v/v) and 2% w/v silicon carbide particles as acoustic scatterers. The phantoms were subjected to either one, two, or three 24-h freeze-thaw cycles. The longitudinal sound speeds of all PVA phantoms were measured, and ranged from 1529 to 1660 m/s. Attenuation spectroscopy was performed in the range of 5 to 20 MHz. The measured attenuation followed a power-law relationship with frequency, wherein the power-law fit constants and exponents ranged from 0.02 to 0.1 dB/cm/MHzn and from 1.6 to 1.9, respectively. These results were in agreement with previous reports for soft tissues. Viscoelasticity of PVA phantoms was assessed using rheometry. The estimated values of shear modulus and viscosity using the Kelvin-Voigt and Kelvin-Voigt fractional derivative models were within the range of previously-reported tissue-mimicking phantoms and soft tissues. The number of freeze-thaw cycles were shown to alter the viscosity of PVA phantoms, even in the absence of glycerol. Scanning electron microscopy images of PVA phantoms without glycerol showed a porous hydrogel network, in contrast to those of PVA-glycerol phantoms with non-porous structure. Phantoms fabricated in this study possess tunable acoustic and viscoelastic properties within the range reported for healthy and diseased soft tissues. This study demonstrates that PVA phantoms can be manufactured with glycerol for applications in ultrasound elastography.


Assuntos
Técnicas de Imagem por Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Álcool de Polivinil/química , Glicerol , Ultrassonografia/métodos , Acústica , Imagens de Fantasmas
2.
J Phys Chem B ; 126(40): 8102-8111, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36171735

RESUMO

This study exploits higher-order micellar transition ranging from ellipsoidal to rodlike to wormlike induced by 1-octanol (C8OH) in an aqueous solution of cetyltrimethylammonium bromide (CTAB), characterizing phase behavior, rheology, and small-angle neutron scattering (SANS). The phase diagram for the ternary system CTAB-C8OH-water was constructed, which depicted the varied solution behavior. Such performance was further inferred from the rheology study (oscillatory-shear frequency sweep (ω) and viscosity (η)) that displayed an interesting solution behavior of CTAB solutions as a function of C8OH. It was observed that at low C8OH concentrations, the solutions appeared viscous/viscoelastic fluids that changed to an elastic gel with an infinite relaxation time at higher concentrations of C8OH, thereby confirming the existence of distinct micelle morphologies. Small-angle neutron scattering (SANS) provided various micellar parameters such as aggregation numbers (Nagg) and micellar size/shape. The experimental results were further validated with a computational simulation approach. The molecular dynamic (MD) study offered an insight into the molecular interactions and aggregation behavior through different analyses, including radial distribution function (RDF), radius of gyration (Rg), and solvent-accessible surface area (SASA).


Assuntos
Micelas , Tensoativos , 1-Octanol , Cetrimônio , Solventes , Água
3.
Carbohydr Polym ; 269: 118254, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294291

RESUMO

The direct write printing method has gained popularity in synthesizing scaffolds for tissue engineering. To achieve an excellent printability of scaffolds, a thorough evaluation of rheological properties is required. We report the synthesis, characterization, rheology, and direct-write printing of chitosan - graphene oxide (CH - GO) nanocomposite hydrogels at a varying concentration of GO in 3 and 4 wt% CH polymeric gels. Rheological characterization of CH - GO hydrogels shows that an addition of only 0.5 wt% of GO leads to a substantial increase in storage modulus (G'), viscosity, and yield stress of 3 and 4 wt% of CH hydrogels. A three-interval thixotropy test (3ITT) shows that 3 wt% CH with 0.5 wt% GO hydrogel has 94% recovery of G' after 7 sequential stress cycles and is the best candidate for direct-write printing. Neuronal cell culture on 3 wt% CH with 0.5 wt% hydrogels reveals that GO promotes the differentiation of SH-SY5Y cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana/farmacologia , Grafite/farmacologia , Hidrogéis/farmacologia , Nanocompostos/química , Bioimpressão , Linhagem Celular Tumoral , Quitosana/química , Grafite/química , Humanos , Hidrogéis/química , Fenômenos Mecânicos , Neuroblastoma/metabolismo , Impressão Tridimensional , Reologia , Viscosidade
4.
Biomed Mater ; 16(4)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857925

RESUMO

We demonstrate a benign and straightforward method to modify the chitosan (CH) by carbamoylation. The free amines on CH are converted into carbamyl functionalities by reacting with potassium cyanate (KCNO). One wt% CH solution, when reacted with KCNO ⩾ 0.1 M, leads to the sol-gel transition of CH through the hydrogen bonding to form carbamoylated chitosan (CCH) hydrogel. Gelation time of CCH decreases with an increase in the KCNO concentration and an interconnected porous network is formed as observed under SEM. Rheological studies show that while one wt% CH solution is a viscous liquid, the CCH hydrogel with 0.5 M KCNO has a storage modulus (G') of 104Pa. The CCH hydrogel is proved to be non-cytotoxic and promotes the attachment and growth of the small lung cancer model A549, and the neuroblastoma SH-SY5Y cell lines. CCH hydrogel also promotes the differentiation of SH-SY5Y cells into neuronal cells, as supported by immunostaining and thus demonstrating its utility as a versatile scaffold for three-dimensional cell-culture systems.


Assuntos
Materiais Biocompatíveis , Técnicas de Cultura de Células em Três Dimensões/métodos , Quitosana , Hidrogéis , Células A549 , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Carbamilação de Proteínas , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...