Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 221(4): 459-70, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15645302

RESUMO

Androgenesis represents one of the most fascinating examples of cell differentiation in plants. In barley, the conversion of stressed uninucleate microspores into embryo-like structures is highly efficient. One of the bottlenecks in this process is the successful release of embryo-like structures out of the exine wall of microspores. In the present work, morphological and biochemical studies were performed during the transition from multicellular structures to globular embryos. Exine wall rupture and subsequent globular embryo formation were observed only in microspores that divided asymmetrically. Independent divisions of the generative and the vegetative nuclei gave rise to heterogeneous multicellular structures, which were composed of two different cellular domains: small cells with condensed chromatin structure and large cells with normal chromatin structure. During exine wall rupture, the small cells died and their death marked the site of exine wall rupture. Cell death in the small cell domain showed typical features of plant programmed cell death. Chromatin condensation and DNA degradation preceded cell detachment and cytoplasm dismantling, a process that was characterized by the formation of vesicles and vacuoles that contained cytoplasmic material. This morphotype of programmed cell death was accompanied by an increase in the activity of caspase-3-like proteases. The orchestration of such a death program culminated in the elimination of the small generative domain, and further embryogenesis was carried out by the large vegetative domain. To date, this is the first report to show evidence that programmed cell death takes part in the development of microspore-derived embryos.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Hordeum/embriologia , Pólen/citologia
2.
J Exp Bot ; 54(384): 1033-43, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12598573

RESUMO

The members of the 14-3-3 isoform family have been shown to be developmentally regulated during animal embryogenesis, where they take part in cell differentiation processes. 14-3-3 isoform-specific expression patterns were studied in plant embryogenic processes, using barley (Hordeum vulgare L.) microspore embryogenesis as a model system. After embryogenesis induction by stress, microspores with enlarged morphology showed higher viability than non-enlarged ones. Following microspore culture, cell division was only observed among the enlarged microspores. Western blot and immunolocalization of three barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C were carried out using isoform-specific antibodies. The level of 14-3-3C protein was higher in enlarged microspores than in non-enlarged ones. A processed form of 14-3-3A was associated with the death pathway of the non-enlarged microspores. In the early embryogenesis stage, 14-3-3 subcellular localization differed among dividing and non-dividing microspores and the microspore-derived multicellular structures showed a polarized expression pattern of 14-3-3C and a higher 14-3-3A signal in epidermis primordia. In the late embryogenesis stage, 14-3-3C was specifically expressed underneath the L(1) layer of the shoot apical meristem and in the scutellum of embryo-like structures (ELSs). 14-3-3C was also expressed in the scutellum and underneath the L(1) layer of the shoot apical meristem of 21 d after pollination (DAP) zygotic embryos. These results reveal that 14-3-3A processing and 14-3-3C isoform tissue-specific expression are closely related to cell fate and initiation of specific cell type differentiation, providing a new insight into the study of 14-3-3 proteins in plant embryogenesis.


Assuntos
Hordeum/metabolismo , Sementes/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese , Proteínas 14-3-3 , Western Blotting , Diferenciação Celular/fisiologia , Fertilidade/fisiologia , Hordeum/embriologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Isoformas de Proteínas/biossíntese , Sementes/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...