Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999015

RESUMO

Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material-tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization.


Assuntos
Implantes Dentários , Osseointegração , Propriedades de Superfície , Titânio , Humanos , Animais , Osseointegração/efeitos dos fármacos , Titânio/química , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
Dent J (Basel) ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38920860

RESUMO

During the last few decades there has been a growing interest in understanding the involvement of epigenetics in the pathogenesis and treatment of periodontal disease. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), may serve as epigenetic modifiers affecting the expression of genes involved in the pathogenesis of inflammatory and autoimmune diseases. There is increasing evidence supporting the idea that the function of all three types of ncRNAs seems to be interdependent. LncRNAs can act as miRNA decoys, while circRNAs can act as miRNA sponges, leading to the re-expression of miRNA target genes. The purpose of this review is to evaluate the expression patterns of ncRNAs in periodontal disease. Studies demonstrate a positive correlation between miRNA expression and periodontitis; however, this cannot be claimed for lncRNAs and circRNAs, which appear to be differentially expressed in periodontitis patients. Several studies have also suggested utilizing ncRNAs as diagnostic and prognostic biomarkers in periodontitis, or even as potential therapeutic targets; Nevetheless, the evidence to support this is premature. Future well-designed research remains necessary to establish the functional role of ncRNAs in the evolution and progression of periodontal disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...