Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 756
Filtrar
3.
PNAS Nexus ; 3(6): pgae227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38911595

RESUMO

In this study, we delve into the intricacies of elastoviscoplastic (EVP) fluids, particularly focusing on how polymer additives influence their extensional behavior. Our findings reveal that polymer additives significantly alter the extensional properties of the EVP fluids, such as relaxation time and extensional stresses while having negligible impact on the shear rheology. Interestingly, the modified fluids exhibit a transition from yield stress-like behavior to viscoelastic-like behavior under high extensional rates, ultimately leading to destabilization under extreme deformation. This research enhances the fundamental understanding of EVP fluids and highlights potential advancements in applications, especially in precision-demanding fields like 3D printing.

4.
J Surg Case Rep ; 2024(6): rjae395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38835948

RESUMO

Von Willebrand disease is an inherited disorder characterized by deficiency of von Willebrand factor, which contributes to platelet adhesion to the endothelium. Patients with coagulation disorders present a challenge at the time of surgery due to the high risk of presenting heavy bleeding within the procedure or postoperative hematomas. We present a case of a 56-year-old woman with Type 1 von Willebrand's disease who was scheduled for breast explantation with autologous reconstruction, due to the presence of long-standing breast implants. The case was satisfactorily managed by a multidisciplinary team formed by plastic surgery, hematology, and anesthesiology, individualizing the management for the patient's case, obtaining good results and a safe procedure.

5.
J Am Chem Soc ; 146(26): 17908-17916, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889309

RESUMO

To fully harness the potential of abundant metal coordination complex photosensitizers, a detailed understanding of the molecular properties that dictate and control the electronic excited-state population dynamics initiated by light absorption is critical. In the absence of detectable luminescence, optical transient absorption (TA) spectroscopy is the most widely employed method for interpreting electron redistribution in such excited states, particularly for those with a charge-transfer character. The assignment of excited-state TA spectral features often relies on spectroelectrochemical measurements, where the transient absorption spectrum generated by a metal-to-ligand charge-transfer (MLCT) electronic excited state, for instance, can be approximated using steady-state spectra generated by electrochemical ligand reduction and metal oxidation and accounting for the loss of absorptions by the electronic ground state. However, the reliability of this approach can be clouded when multiple electronic configurations have similar optical signatures. Using a case study of Fe(II) complexes supported by benzannulated diarylamido ligands, we highlight an example of such an ambiguity and show how time-resolved X-ray emission spectroscopy (XES) measurements can reliably assign excited states from the perspective of the metal, particularly in conjunction with accurate synthetic models of ligand-field electronic excited states, leading to a reinterpretation of the long-lived excited state as a ligand-field metal-centered quintet state. A detailed analysis of the XES data on the long-lived excited state is presented, along with a discussion of the ultrafast dynamics following the photoexcitation of low-spin Fe(II)-Namido complexes using a high-spin ground-state analogue as a spectral model for the 5T2 excited state.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38916186

RESUMO

Significance: Fidelity of intercellular communication depends on unambiguous interactions between protein ligands and membrane receptors. Most proteins destined to the extracellular space adopt the required three-dimensional shape as they travel through the endoplasmic reticulum (ER), Golgi complex, and other organelles of the exocytic pathway. However, some proteins, many of which are involved in inflammation, avoid this classical secretory route and follow unconventional pathways to leave the cell. Recent Advances: Stringent quality control systems operate in the ER and cis-Golgi, restricting transport to native conformers, devoid of non-native disulfides and/or reactive thiols. However, some proteins released by living cells require reduced cysteines to exert their extracellular function(s). Remarkably, these proteins lack the secretory signal sequence normally required by secretory proteins for translocation into the ER lumen. Critical Issues: Why do interleukin-1ß, high mobility group box 1, and other proinflammatory proteins avoid the ER-Golgi route to reach the intercellular space? These proteins require reactive cysteines for exerting their function. Therefore, eluding thiol-mediated quality control along the exocytic pathway is likely one of the main reasons why extracellular proteins that need to be reduced utilize unconventional pathways of secretion, where a quality control aimed at oxidating native cysteines is not present. Future Directions: Particularly under stress conditions, cells release redox-active enzymes and nonprotein thiol compounds that exert an extracellular control of redox-sensitive protein activity, shaping inflammatory responses. This post-secretion, redox-dependent editing of protein messages is still largely undefined. Understanding the underlying mechanistic events will hopefully provide new tools to control inflammation.

8.
J Environ Manage ; 360: 121190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763118

RESUMO

Arsenic (As) and cadmium (Cd) accumulation in rice grain is a global concern threatening food security and safety to the growing population. As and Cd are toxic non-essential elements poisonous to animal and human at higher levels. Its accumulation in agro-ecosystems pose a public health risk to consumers of agro-ecosystem products. Due to their hazards, As and Cd sources should be cleared, avoiding entering plants and the human body. As and Cd removal in soils and grains in agro-ecosystems has been conducted by various materials (natural and synthesized), however, there are little documentation on their contribution on As and Cd removal or reduction in rice grains. This identified knowledge gap necessitate a systematically review to understand efficiency and mechanisms of As and Cd availability reduction and removal in paddy farming areas through utilization of various synthetic and modified materials. To achieve this, published peer reviewed articles between 2010 and 2024 were collected from various database i.e., Science Direct, Web of Science, Google Scholar, and Research Gate and analyzed its content in respect to As and Cd reduction and removal. Furthermore, collected data were re-analyzed to determine standardized mean differences (SMD) with 95% confidence intervals (CI). Based on 96 studies with 228 observations involving Fe, Ca, Si, and Se-based materials were identified, it was found that application of Fe, Ca, Si, and Se-based materials potentially reduced As and Cd in rice grains among various study sites and across studies. Among the studied materials, Fe-based materials observed to be more efficient compared to other utilized materials. However, there little or no information on performance of materials when used in combination and how they can improve crop productivity and soil health, thus requiring further studies. Thus, this study confirm Fe, Ca, Si, and Se modified materials have significant potential to reduce As and Cd availability in paddy farming areas and rice grains, thus necessary effort must be made to ensure materials access and availability for farmers utilization in paddy fields to reduce As and Cd accumulation.


Assuntos
Agricultura , Arsênio , Cádmio , Oryza , Arsênio/análise , Solo/química , Poluentes do Solo/metabolismo , Humanos
9.
Nat Commun ; 15(1): 4070, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802336

RESUMO

Elastic turbulence is the chaotic fluid motion resulting from elastic instabilities due to the addition of polymers in small concentrations at very small Reynolds ( Re ) numbers. Our direct numerical simulations show that elastic turbulence, though a low Re phenomenon, has more in common with classical, Newtonian turbulence than previously thought. In particular, we find power-law spectra for kinetic energy E(k) ~ k-4 and polymeric energy Ep(k) ~ k-3/2, independent of the Deborah (De) number. This is further supported by calculation of scale-by-scale energy budget which shows a balance between the viscous term and the polymeric term in the momentum equation. In real space, as expected, the velocity field is smooth, i.e., the velocity difference across a length scale r, δu ~ r but, crucially, with a non-trivial sub-leading contribution r3/2 which we extract by using the second difference of velocity. The structure functions of second difference of velocity up to order 6 show clear evidence of intermittency/multifractality. We provide additional evidence in support of this intermittent nature by calculating moments of rate of dissipation of kinetic energy averaged over a ball of radius r, εr, from which we compute the multifractal spectrum.

10.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598417

RESUMO

Two camps have emerged for targeting nanoparticles to specific organs and cell types: affinity moiety targeting and physicochemical tropism. Here we directly compare and combine both using intravenous (IV) lipid nanoparticles (LNPs) designed to target the lungs. We utilized PECAM antibodies as affinity moieties and cationic lipids for physicochemical tropism. These methods yield nearly identical lung uptake, but aPECAM LNPs show higher endothelial specificity. LNPs combining these targeting methods had >2-fold higher lung uptake than either method alone and markedly enhanced epithelial uptake. To determine if lung uptake is because the lungs are the first organ downstream of IV injection, we compared IV vs intra-arterial (IA) injection into the carotid artery, finding that IA combined-targeting LNPs achieve 35% of the injected dose per gram (%ID/g) in the first-pass organ, the brain, among the highest reported. Thus, combining the affinity moiety and physicochemical strategies provides benefits that neither targeting method achieves alone.

11.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659905

RESUMO

Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both in vitro and in vivo . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.

12.
Sci Total Environ ; 925: 171769, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499104

RESUMO

Aquatic ecosystems continue to be threatened by chemical pollution. To what extent organisms are able to cope with chemical exposure depends on their ability to display mechanisms of defense across different organs. Among these mechanisms, biotransformation processes represent key physiological responses that facilitate detoxification and reduce the bioaccumulation potential of chemicals. Biotransformation does not only depend on the ability of different organs to display biotransformation enzymes but also on the affinity of chemicals towards these enzymes. In the present study, we explored the ability of different organs and of two freshwater fish to support biotransformation processes through the determination of in vitro phase I and II biotransformation enzyme activity, and their role in supporting intrinsic clearance and the formation of biotransformation products. Three environmentally relevant pollutants were evaluated: the polycyclic aromatic hydrocarbon (PAH) pyrene (as recommended by the OECD 319b test guideline), the fungicide azoxystrobin, and the pharmaceutical propranolol. Comparative studies using S9 sub-cellular fractions derived from the liver, intestine, gills, and brain of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) revealed significant phase I and II enzyme activity in all organs. However, organ- and species-specific differences were found. In brown trout, significant extrahepatic biotransformation was observed for pyrene but not for azoxystrobin and propranolol. In rainbow trout, the brain appeared to biotransform azoxystrobin. In this same species, propranolol appeared to be biotransformed by the intestine and gills. Biotransformation products could be detected only from hepatic biotransformation, and their profiles and formation rates displayed species-specific patterns and occurred at different magnitudes. Altogether, our findings further contribute to the current understanding of organ-specific biotransformation capacity, beyond the expression and activity of enzymes, and its dependence on specific enzyme-chemical interactions to support mechanisms of defense against exposure.


Assuntos
Ecossistema , Oncorhynchus mykiss , Pirimidinas , Estrobilurinas , Animais , Propranolol , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Pirenos/metabolismo , Biotransformação
13.
Sci Rep ; 14(1): 6708, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509104

RESUMO

The oral and gastrointestinal mucosae represent the main targets of the toxic effect of chemo and/or radiotherapy administered during the conditioning regimen before hematopoietic stem cell transplant (HSCT). These harmful consequences and the immunological complications that may occur after the transplant (such as Graft versus Host Disease, GvHD) are responsible for the clinical symptoms associated with mucositis during the aplasia phase, like pain, nausea, vomiting, and diarrhea. These toxicities could play a critical role in the oral and gastrointestinal microbiomes during the post-transplant phase, and the degree of microbial dysbiosis and dysregulation among different bacterial species could also be crucial in intestinal mucosa homeostasis, altering the host's innate and adaptive immune responses and favoring abnormal immune responses responsible for the occurrence of GvHD. This prospective pediatric study aims to analyze longitudinally oral and gut microbiomes in 17 pediatric patients who received allogeneic HSCT for malignant and non-malignant diseases. The oral mucositis was mainly associated with an increased relative abundance of Fusobacteria, and Prevotella species, while Streptococcus descendants showed a negative correlation. The fecal microbiome of subjects affected by cutaneous acute GvHD (aGvHD) correlated with Proteobacteria. Oral mucosal microbiota undergoes changes after HSCT, Fusobacteria, and Prevotella represent bacterial species associated with mucositis and they could be the target for future therapeutic approaches, while fecal microbiome in patients with acute GvHD (aGvHD) revealed an increase of different class of Proteobacteria (Alphaproteobacteria and Deltaproteobacteria) and a negative correlation with the class of Gammaproteobacteria.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Mucosite , Humanos , Criança , Mucosite/etiologia , Disbiose/etiologia , Estudos Prospectivos , Bactérias , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
14.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454606

RESUMO

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Assuntos
Barreira Hematoencefálica , Modelos Animais de Doenças , AVC Isquêmico , Lipossomos , Nanopartículas , Molécula 1 de Adesão de Célula Vascular , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Animais , Camundongos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Nanopartículas/química , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Humanos
15.
Nat Immunol ; 25(4): 633-643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486021

RESUMO

Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.


Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , SARS-CoV-2 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Anticorpos , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
17.
Adv Mater ; 36(26): e2312026, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394670

RESUMO

Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up or down-regulate any protein of interest. LNPs have mostly been targeted to specific cell types or organs by physicochemical targeting in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. Here lung-tropic LNPs are examined, whose organ tropism derives from containing either a cationic or ionizable lipid conferring a positive zeta potential. Surprisingly, these LNPs are found to induce massive thrombosis. Such thrombosis is shown in the lungs and other organs, and it is shown that it is greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles, and even by lung-tropic ionizable lipids that do not have a permanent cationic charge. The mechanism depends on the LNPs binding to and then changing the conformation of fibrinogen, which then activates platelets and thrombin. Based on these mechanisms, multiple solutions are engineered that enable positively charged LNPs to target the lungs while ameliorating thrombosis. The findings illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.


Assuntos
Coagulação Sanguínea , Lipídeos , Pulmão , Nanopartículas , Trombose , Nanopartículas/química , Pulmão/metabolismo , Animais , Coagulação Sanguínea/efeitos dos fármacos , Trombose/tratamento farmacológico , Trombose/metabolismo , Lipídeos/química , Trombina/metabolismo , Trombina/química , Humanos , Fibrinogênio/química , Fibrinogênio/metabolismo , Camundongos
18.
Ann Epidemiol ; 91: 51-57, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331235

RESUMO

PURPOSE: During the early COVID-19 pandemic, an increase in weight gain among the general population was observed; however, gestational weight gain (GWG) was not thoroughly evaluated. We evaluated changes in GWG during the pandemic closures in South Carolina. METHODS: We used live, singleton birth records to compare GWG outcomes among three pregnancy groups occurring before (January 2018-February 2020), during (March-May 2020), and after (June 2020-December 2021) pandemic closures. GWG categories were defined by the Institute of Medicine (IOM) recommendations. We used multinomial logistic regression models to calculate prevalence ratios (PRs) of GWG categories stratified by prepregnancy body mass index (BMI) category. RESULTS: We analyzed 177,571 birth records. Women with normal weight (n = 64,491, 36%) had a slightly lower prevalence of excessive GWG during and after the pandemic closures (PR 0.94; 95% CI: 0.91-0.98 and PR 0.95; 95% CI: 0.93-0.98, respectively). We observed no changes in GWG patterns for women with overweight and obesity. CONCLUSIONS: We found limited changes in GWG patterns for a subset of pregnant women during and after pandemic closures, compared with prepandemic period in South Carolina, countering findings of weight changes among the general population.


Assuntos
COVID-19 , Ganho de Peso na Gestação , Complicações na Gravidez , Feminino , Gravidez , Humanos , Pandemias , South Carolina/epidemiologia , COVID-19/epidemiologia , Aumento de Peso , Sobrepeso/epidemiologia , Índice de Massa Corporal , Resultado da Gravidez/epidemiologia , Complicações na Gravidez/epidemiologia
19.
J Pediatr Urol ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38341358

RESUMO

INTRODUCTION: Over the years, Dorsal Inlay Graft (DIG) urethroplasty has gained worldwide acceptance for primary hypospadias repair. However, its safety and effectiveness for revision surgery are yet to be proven. OBJECTIVE: The aim of the study is to assess and compare complication rates and functional outcomes of DIG surgery in revision versus primary hypospadias repair. MATERIAL AND METHODS: We carried out a retrospective analysis of data collected from 53 consecutive DIG urethroplasties performed by a single surgeon at our institution. Patients were stratified in two groups - primary repair and redo-urethroplasty. For each group, we recorded standard pre-operative characteristics, surgical technicalities, complication rates and uroflowmetry parameters. RESULTS: Out of 53 DIG urethroplasties, 21 (39.6 %) where primary and 32 (60.4 %) were re-do. As expected, the two groups differed for median age at surgery: 20 months for primary and 68.5 months for revision surgery (p < 0.001). Additionally, all 21 (100 %) primary interventions were performed with a preputial graft, whereas among revision DIG urethroplasties only 2 (6.3 %) where preputial and 30 (93.8 %) were buccal (p < 0.001). Catheterization time (7 vs 8 days, p = 0.155) and postoperative complication rates (14.3 % vs 9.4 %, p = 0.581) were comparable between the primary and revision surgery group, respectively (all p > .05). Forty-two of the 53 patients underwent uroflowmetry during follow-up. Of these, 19 (63 %) patients presented with abnormal uroflowmetry and 11 (37 %) had equivocal parameters with no difference between the two groups. DISCUSSION: Dorsal Inlay Graft urethroplasty has long been known to be safe and effective for primary hypospadias repair. On the other hand, data on dorsal inlay graft urethroplasty as a salvage surgery after primary hypospadias repair failure is scarce. Surprisingly, according to our findings, surgical outcomes and complication rates are comparable between primary and revision hypospadias cases. Additionally, our results in the redo group are absolutely encouraging if compared to those reported in the literature for the same subset of patients. CONCLUSIONS: According to our findings, DIG urethroplasty is a safe and effective option to treat revision hypospadias repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...