Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514249

RESUMO

Understanding leaf generation dynamics, their seasonal changes, and their responses to nitrogen fertilization (NF) is key to improving pasture utilization efficiency. The objectives of this research were to determine structural and morphogenetic variables underlying changes in herbage mass on a set of Paspalum notatum genotypes. Ten P. notatum genotypes were evaluated in experimental plots following a completely randomized block design under a split-plot arrangement for two N-rates during four periods. Increased herbage mass (HM) after N-fertilization was explained by a higher tiller density (TD) (41.8%) and tiller weight (TW) (22.1%). The increment of TW after NF was due to the increase in leaf blade length (LBL) and width (LBW). During the flowering season, NF increases the reproductive tiller density by 262.5%. Seasonal variation in HM was mainly explained by changes in LBL that modified TW. Morphogenetic traits differed between genotypes of different growth habits; therefore, different management practices are suggested. The average increase in leaf elongation rate in response to NF was about 36.7%, generating longer leaves despite reductions in leaf elongation time (LET). The depletion in LBL and consequently in TW and HM during the autumn was attributed to the reduction in LET.

2.
Genes (Basel) ; 14(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36980903

RESUMO

The tetraploid germplasm of Paspalum contains a large diversity that can be used to generate better forages. The objective was to evaluate a group of Paspalum notatum and Paspalum simplex apomictic hybrids for a set of agronomic traits and apomixis expressivity. Forage yield, cold tolerance, winter regrowth, and seed yield were evaluated. The expressivity of apomixis was evaluated in P. simplex hybrids by flow cytometry. Progeny testing with molecular markers was used to determine the genotypic variability in the progeny. Differences within P. notatum and P. simplex hybrids were observed for all traits, and some of them were superior in comparison with the controls. The accumulated forage yield during three years was 988 g m-2 in the P. notatum hybrids, whereas, in P. simplex, the average forage yield per harvest (40 days of regrowth) was 180 g m-2. In P. simplex, the apomixis expressivity varied between 0 and 100%, and 65% of the hybrids showed high apomixis expressivity (superior to 70%). The genotypic mean homogeneity in the progeny was 76% and 85% in P. notatum and P. simplex, respectively. The generation of hybrids with high apomixis expressivity that combine good agronomic performance and homogeneity in the offspring is possible in tetraploid P. notatum and P. simplex.


Assuntos
Apomixia , Paspalum , Paspalum/genética , Apomixia/genética , Tetraploidia , Reprodução , Fenótipo
3.
Appl Environ Microbiol ; 88(21): e0094222, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36226941

RESUMO

Grasses harbor diverse fungi, including some that produce mycotoxins or other secondary metabolites. Recently, Florida cattle farmers reported cattle illness, while the cattle were grazing on warm-season grass pastures, that was not attributable to common causes, such as nutritional imbalances or nitrate toxicity. To understand correlations between grass mycobiome and mycotoxin production, we investigated the mycobiomes associated with five prominent, perennial forage and weed grasses [Paspalum notatum Flügge, Cynodon dactylon (L.) Pers., Paspalum nicorae Parodi, Sporobolus indicus (L.) R. Br., and Andropogon virginicus (L.)] collected from six Florida pastures actively grazed by livestock. Black fungal stromata of Myriogenospora and Balansia were observed on P. notatum and S. indicus leaves and were investigated. High-throughput amplicon sequencing was applied to delineate leaf mycobiomes. Mycotoxins from P. notatum leaves were inspected using liquid chromatography-mass spectrometry (LC-MS/MS). Grass species, cultivars, and geographic localities interactively affected fungal community assemblies of asymptomatic leaves. Among the grass species, the greatest fungal richness was detected in the weed S. indicus. The black fungal structures of P. notatum leaves were dominated by the genus Myriogenospora, while those of S. indicus were codominated by the genus Balansia and a hypermycoparasitic fungus of the genus Clonostachys. When comparing mycotoxins detected in P. notatum leaves with and without M. atramentosa, emodin, an anthraquinone, was the only compound which was significantly different (P < 0.05). Understanding the leaf mycobiome and the mycotoxins it may produce in warm-season grasses has important implications for how these associations lead to secondary metabolite production and their subsequent impact on animal health. IMPORTANCE The leaf mycobiome of forage grasses can have a major impact on their mycotoxin contents of forage and subsequently affect livestock health. Despite the importance of the cattle industry in warm-climate regions, such as Florida, studies have been primarily limited to temperate forage systems. Our study provides a holistic view of leaf fungi considering epibiotic, endophytic, and hypermycoparasitic associations with five perennial, warm-season forage and weed grasses. We highlight that plant identity and geographic location interactively affect leaf fungal community composition. Yeasts appeared to be an overlooked fungal group in healthy forage mycobiomes. Furthermore, we detected high emodin quantities in the leaves of a widely planted forage species (P. notatum) whenever epibiotic fungi occurred. Our study demonstrated the importance of identifying fungal communities, ecological roles, and secondary metabolites in perennial, warm-season grasses and their potential for interfering with livestock health.


Assuntos
Emodina , Micobioma , Micotoxinas , Bovinos , Animais , Poaceae/química , Estações do Ano , Cromatografia Líquida , Espectrometria de Massas em Tandem , Gado , Geografia , Folhas de Planta , Estruturas Fúngicas
4.
Front Plant Sci ; 10: 1377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824520

RESUMO

The objective of this review is to analyze and describe the impact that mode of reproduction in Paspalum has on germplasm conservation, genetic improvement, and commercialization of cultivars. Germplasm collection and conservation can now be rethought considering the newly available information related to how diversity is allocated in nature and how it can be transferred between the sexual and apomictic germplasm using novel breeding approaches. An inventory of species and accessions conserved around the world is analyzed in relation to the main germplasm banks. Because of the importance of apomixis in Paspalum species different breeding approaches have been used and tested. Knowledge related to the inheritance of apomixis, variable expressivity of the trait and techniques for early identification of apomicts has helped to improve the efficiency of the breeding methods. Novel breeding techniques are also being developed and are described regarding its advantages and limitations. Finally, the impact of reproductive mode on the adoption of the released cultivars is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...