Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1864(8): 952-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26861774

RESUMO

BACKGROUND: The free radical nitric oxide (NO) and derivative reactive nitrogen species (RNS) play essential roles in cellular redox regulation mainly through protein S-nitrosylation, a redox post-translational modification in which specific cysteines are converted to nitrosothiols. SCOPE OF VIEW: This review aims to discuss the current state of knowledge, as well as future perspectives, regarding protein S-nitrosylation in photosynthetic organisms. MAJOR CONCLUSIONS: NO, synthesized by plants from different sources (nitrite, arginine), provides directly or indirectly the nitroso moiety of nitrosothiols. Biosynthesis, reactivity and scavenging systems of NO/RNS, determine the NO-based signaling including the rate of protein nitrosylation. Denitrosylation reactions compete with nitrosylation in setting the levels of nitrosylated proteins in vivo. GENERAL SIGNIFICANCE: Based on a combination of proteomic, biochemical and genetic approaches, protein nitrosylation is emerging as a pervasive player in cell signaling networks. Specificity of protein nitrosylation and integration among different post-translational modifications are among the major challenges for future experimental studies in the redox biology field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.


Assuntos
Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteômica/métodos , Arginina/genética , Arginina/metabolismo , Óxido Nítrico/genética , Nitritos/metabolismo , Proteínas de Plantas/genética , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA