Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12376, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811794

RESUMO

Arachidonic acid (C20: 4n-6, AA) plays a fundamental role in fish physiology, influencing growth, survival and stress resistance. However, imbalances in dietary AA can have detrimental effects on fish health and performance. Optimal AA requirements for rainbow trout have not been established. This study aimed to elucidate the effects of varying dietary AA levels on survival, growth, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capacity, oxylipin profiles, lipid peroxidation, and stress resistance of rainbow trout fry. Over a period of eight weeks, 4000 female rainbow trout fry at the resorptive stage (0.12 g) from their first feeding were fed diets with varying levels of AA (0.6%, 1.1% or 2.5% of total fatty acids) while survival and growth metrics were closely monitored. The dietary trial was followed by an acute confinement stress test. Notably, while the fatty acid profiles of the fish reflected dietary intake, those fed an AA-0.6% diet showed increased expression of elongase5, highlighting their inherent ability to produce LC-PUFAs from C18 PUFAs and suggesting potential AA or docosapentaenoic acidn-6 (DPAn-6) biosynthesis. However, even with this biosynthetic capacity, the trout fed reduced dietary AA had higher mortality rates. The diet had no effect on final weight (3.38 g on average for the three diets). Conversely, increased dietary AA enhanced eicosanoid production from AA, suggesting potential inflammatory and oxidative consequences. This was further evidenced by an increase in non-enzymatic lipid oxidation metabolites, particularly in the AA-2.5% diet group, which had higher levels of phytoprostanes and isoprostanes, markers of cellular oxidative damage. Importantly, the AA-1.1% diet proved to be particularly beneficial for stress resilience. This was evidenced by higher post-stress turnover rates of serotonin and dopamine, neurotransmitters central to the fish's stress response. In conclusion, a dietary AA intake of 1.1% of total fatty acids appears to promote overall resilience in rainbow trout fry.


Assuntos
Ácido Araquidônico , Ácidos Graxos Insaturados , Oncorhynchus mykiss , Oxilipinas , Estresse Fisiológico , Animais , Oncorhynchus mykiss/metabolismo , Oxilipinas/metabolismo , Ácido Araquidônico/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Ração Animal/análise , Dieta/veterinária , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
Sci Rep ; 13(1): 19634, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949954

RESUMO

The formulation of sustainable fish feeds based on plant ingredients supplemented by alternative ingredients to plant (insect, micro-algae, yeast) and genetic selection of fish for plant-based diets were tested on rainbow trout in two separate experiments. Plant-based diets and corresponding diets supplemented with an ingredient mix: insect, micro-algae and yeast in Experiment A, and insect and yeast in Experiment B were compared to commercial-like diets. In experiment A, the mix-supplemented diet was successful in compensating the altered growth performance of fish fed their respective plant-based diet compared to those fed the commercial diet, by restoring feed conversion. In experiment B, the selected line demonstrated improved growth performances of fish fed mix-supplemented and plant-based diets compared to the non-selected line. Metabolomics demonstrated a plasma compositional stability in fish fed mix-supplemented and basal plant-based diets comprising an amino acid accumulation and a glucose depletion, compared to those fed commercial diets. The selected line fed mix-supplemented and commercial diets showed changes in inositol, ethanol and methanol compared to the non-selected line, suggesting an involvement of microbiota. Changes in plasma glycine-betaine content in fish fed the mix-supplemented diet suggest the ability of the selected line to adapt to alternative ingredients.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Saccharomyces cerevisiae , Dieta , Suplementos Nutricionais , Seleção Genética , Ração Animal/análise
3.
Anim Microbiome ; 3(1): 47, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225826

RESUMO

BACKGROUND: Farmed fish food with reduced fish-derived products are gaining growing interest due to the ecological impact of fish-derived protein utilization and the necessity to increase aquaculture sustainability. Although different terrestrial plant proteins could replace fishmeal proteins, their use is associated with adverse effects. Here, we investigated how diets composed of terrestrial vegetal sources supplemented with proteins originating from insect, yeast or terrestrial animal by-products affect rainbow trout (Onchorynchus mykiss) gut microbiota composition, growth performance and resistance to bacterial infection by the fish pathogen Flavobacterium psychrophilum responsible for frequent outbreaks in aquaculture settings. RESULTS: We showed that the tested regimes significantly increased gut bacterial richness compared to full vegetal or commercial-like diets, and that vegetal diet supplemented with insect and yeast proteins improves growth performance compared to full vegetal diet without altering rainbow trout susceptibility to F. psychrophilum infection. CONCLUSION: Our results demonstrate that the use of insect and yeast protein complements to vegetal fish feeds maintain microbiota functions, growth performance and fish health, therefore identifying promising alternative diets to improve aquaculture's sustainability.

4.
Microorganisms ; 8(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899237

RESUMO

Innovative fish diets made of terrestrial plants supplemented with sustainable protein sources free of fish-derived proteins could contribute to reducing the environmental impact of the farmed fish industry. However, such alternative diets may influence fish gut microbial community, health, and, ultimately, growth performance. Here, we developed five fish feed formulas composed of terrestrial plant-based nutrients, in which fish-derived proteins were substituted with sustainable protein sources, including insect larvae, cyanobacteria, yeast, or recycled processed poultry protein. We then analyzed the growth performance of European sea bass (Dicentrarchus labrax L.) and the evolution of gut microbiota of fish fed the five formulations. We showed that replacement of 15% protein of a vegetal formulation by insect or yeast proteins led to a significantly higher fish growth performance and feed intake when compared with the full vegetal formulation, with feed conversion ratio similar to a commercial diet. 16S rRNA gene sequencing monitoring of the sea bass gut microbial community showed a predominance of Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. The partial replacement of protein source in fish diets was not associated with significant differences on gut microbial richness. Overall, our study highlights the adaptability of European sea bass gut microbiota composition to changes in fish diet and identifies promising alternative protein sources for sustainable aquafeeds with terrestrial vegetal complements.

5.
J Nutr ; 150(9): 2268-2277, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32805000

RESUMO

BACKGROUND: Plant raw materials are commonly used in aquafeeds, as marine resources are unsustainable. However, full plant-based diets lead to poorer fish growth performance. OBJECTIVE: We aimed to understand the metabolic effects of a yeast fraction as a protein supplement in a plant-based diet and to integrate such effects with phenotypic traits as a new approach to assess the interest of this raw material. METHODS: Juvenile (49 g) rainbow trout (Oncorhynchus mykiss) were fed graded levels of a yeast protein-rich fraction (5% YST05, 10% YST10, 15% YST15) in a plant-based diet (PB) for 84 d. Final body weight, feed conversion ratio, and hepatosomatic and viscerosomatic indexes were measured. Plasma, liver, and muscle 1H-NMR fingerprints were analyzed with principal component analyses, and their metabolite patterns were clustered according to the yeast level to identify concomitant metabolic effects. A regression modeling approach was used to predict tissue metabolite changes from plasma fingerprints. RESULTS: In tissues, the patterns of metabolite changes followed either linear trends with the gradual inclusion of a yeast fraction (2 patterns out of 6 in muscle, 1 in liver) or quadratic trends (4 patterns in muscle, 5 in liver). Muscle aspartate and glucose (395 and 138% maximum increase in relative content compared with PB, respectively) revealing modification in energy metabolism, as well as modification of liver betaine (163% maximum increase) and muscle histidine (57% maximum decrease) related functions, indicates that the yeast fraction could improve growth in several ways. The highest correlation between measured and predicted metabolite intensities in a tissue based on plasma fingerprints was observed for betaine in liver (r = 0.80). CONCLUSIONS: These findings herald a new approach to assess the plurality of metabolic effects induced by diets and establish the optimal level of raw materials. They open the way for using plasma as a noninvasive matrix in trout nutrition studies.


Assuntos
Proteínas Alimentares/administração & dosagem , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Oncorhynchus mykiss/crescimento & desenvolvimento , Plantas/química , Ração Animal/análise , Animais , Peso Corporal/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Feminino , Proteínas Fúngicas , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Saccharomyces cerevisiae
6.
Metabolites ; 10(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120848

RESUMO

Nutrition of high trophic species in aquaculture is faced with the development of sustainable plant-based diets. Insects seem particularly promising for supplementing plant-based diets. However, the complex effect of whole insect meal on fish metabolism is not well understood, and even less is known about insect meal extracts. The purpose of this work was to decipher the metabolic utilization of a plant-based diet supplemented with the gradual addition of an insect protein extract (insect hydrolysate at 0%, 5%, 10% and 15%). 1H-NMR profiling was used to assess metabolites in experimental diets and in fish plasma, liver and muscle. A significant dose-dependent increase in growth and feed efficiency with increasing insect extract amounts was observed. The incremental incorporation of the insect extract in diet had a significant and progressive impact on the profile of dietary soluble compounds and trout metabolome. The metabolites modulated by dietary insect extracts in plasma and tissues were involved in protein and energy metabolism. This was associated with the efficient metabolic use of dietary free amino acids toward protein synthesis through the concomitant supply of balanced free amino acids and energy substrates in muscle. The findings provide new insights into how the dietary food metabolome affects fish metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...