Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Radiol ; 97(1155): 535-543, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38323515

RESUMO

OBJECTIVES: To review studies on deep learning (DL) models for classification, detection, and segmentation of rib fractures in CT data, to determine their risk of bias (ROB), and to analyse the performance of acute rib fracture detection models. METHODS: Research articles written in English were retrieved from PubMed, Embase, and Web of Science in April 2023. A study was only included if a DL model was used to classify, detect, or segment rib fractures, and only if the model was trained with CT data from humans. For the ROB assessment, the Quality Assessment of Diagnostic Accuracy Studies tool was used. The performance of acute rib fracture detection models was meta-analysed with forest plots. RESULTS: A total of 27 studies were selected. About 75% of the studies have ROB by not reporting the patient selection criteria, including control patients or using 5-mm slice thickness CT scans. The sensitivity, precision, and F1-score of the subgroup of low ROB studies were 89.60% (95%CI, 86.31%-92.90%), 84.89% (95%CI, 81.59%-88.18%), and 86.66% (95%CI, 84.62%-88.71%), respectively. The ROB subgroup differences test for the F1-score led to a p-value below 0.1. CONCLUSION: ROB in studies mostly stems from an inappropriate patient and data selection. The studies with low ROB have better F1-score in acute rib fracture detection using DL models. ADVANCES IN KNOWLEDGE: This systematic review will be a reference to the taxonomy of the current status of rib fracture detection with DL models, and upcoming studies will benefit from our data extraction, our ROB assessment, and our meta-analysis.


Assuntos
Aprendizado Profundo , Fraturas das Costelas , Humanos , Fraturas das Costelas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Estudos Retrospectivos
2.
J Pathol Inform ; 14: 100183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687531

RESUMO

Computational pathology targets the automatic analysis of Whole Slide Images (WSI). WSIs are high-resolution digitized histopathology images, stained with chemical reagents to highlight specific tissue structures and scanned via whole slide scanners. The application of different parameters during WSI acquisition may lead to stain color heterogeneity, especially considering samples collected from several medical centers. Dealing with stain color heterogeneity often limits the robustness of methods developed to analyze WSIs, in particular Convolutional Neural Networks (CNN), the state-of-the-art algorithm for most computational pathology tasks. Stain color heterogeneity is still an unsolved problem, although several methods have been developed to alleviate it, such as Hue-Saturation-Contrast (HSC) color augmentation and stain augmentation methods. The goal of this paper is to present Data-Driven Color Augmentation (DDCA), a method to improve the efficiency of color augmentation methods by increasing the reliability of the samples used for training computational pathology models. During CNN training, a database including over 2 million H&E color variations collected from private and public datasets is used as a reference to discard augmented data with color distributions that do not correspond to realistic data. DDCA is applied to HSC color augmentation, stain augmentation and H&E-adversarial networks in colon and prostate cancer classification tasks. DDCA is then compared with 11 state-of-the-art baseline methods to handle color heterogeneity, showing that it can substantially improve classification performance on unseen data including heterogeneous color variations.

3.
PLoS One ; 17(3): e0264429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239697

RESUMO

INTRODUCTION: High yield HIV testing strategies are critical to reach epidemic control in high prevalence and low-resource settings such as East and Southern Africa. In this study, we aimed to predict the HIV status of individuals living in Angola, Burundi, Ethiopia, Lesotho, Malawi, Mozambique, Namibia, Rwanda, Zambia and Zimbabwe with the highest precision and sensitivity for different policy targets and constraints based on a minimal set of socio-behavioural characteristics. METHODS: We analysed the most recent Demographic and Health Survey from these 10 countries to predict individual's HIV status using four different algorithms (a penalized logistic regression, a generalized additive model, a support vector machine, and a gradient boosting trees). The algorithms were trained and validated on 80% of the data, and tested on the remaining 20%. We compared the predictions based on the F1 score, the harmonic mean of sensitivity and positive predictive value (PPV), and we assessed the generalization of our models by testing them against an independent left-out country. The best performing algorithm was trained on a minimal subset of variables which were identified as the most predictive, and used to 1) identify 95% of people living with HIV (PLHIV) while maximising precision and 2) identify groups of individuals by adjusting the probability threshold of being HIV positive (90% in our scenario) for achieving specific testing strategies. RESULTS: Overall 55,151 males and 69,626 females were included in the analysis. The gradient boosting trees algorithm performed best in predicting HIV status with a mean F1 score of 76.8% [95% confidence interval (CI) 76.0%-77.6%] for males (vs [CI 67.8%-70.6%] for SVM) and 78.8% [CI 78.2%-79.4%] for females (vs [CI 73.4%-75.8%] for SVM). Among the ten most predictive variables for each sex, nine were identical: longitude, latitude and, altitude of place of residence, current age, age of most recent partner, total lifetime number of sexual partners, years lived in current place of residence, condom use during last intercourse and, wealth index. Only age at first sex for male (ranked 10th) and Rohrer's index for female (ranked 6th) were not similar for both sexes. Our large-scale scenario, which consisted in identifying 95% of all PLHIV, would have required testing 49.4% of males and 48.1% of females while achieving a precision of 15.4% for males and 22.7% for females. For the second scenario, only 4.6% of males and 6.0% of females would have had to be tested to find 55.7% of all males and 50.5% of all females living with HIV. CONCLUSIONS: We trained a gradient boosting trees algorithm to find 95% of PLHIV with a precision twice higher than with general population testing by using only a limited number of socio-behavioural characteristics. We also successfully identified people at high risk of infection who may be offered pre-exposure prophylaxis or voluntary medical male circumcision. These findings can inform the implementation of new high-yield HIV tests and help develop very precise strategies based on low-resource settings constraints.


Assuntos
Circuncisão Masculina , Infecções por HIV , Profilaxia Pré-Exposição , África Austral/epidemiologia , Feminino , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Teste de HIV , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...