Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 170(4): 2251-63, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26896394

RESUMO

Allopolyploids are organisms possessing more than two complete sets of chromosomes from two or more species and are frequently more vigorous than their progenitors. To address the question why allopolyploids display hybrid vigor, we compared the natural allopolyploid Arabidopsis suecica to its progenitor species Arabidopsis thaliana and Arabidopsis arenosa. We measured chlorophyll content, CO2 assimilation, and carbohydrate production under varying light conditions and found that the allopolyploid assimilates more CO2 per unit chlorophyll than either of the two progenitor species in high intensity light. The increased carbon assimilation corresponds with greater starch accumulation, but only in strong light, suggesting that the strength of hybrid vigor is dependent on environmental conditions. In weaker light A. suecica tends to produce as much primary metabolites as the better progenitor. We found that gene expression of LIMIT DEXTRINASE1, a debranching enzyme that cleaves branch points within starch molecules, is at the same level in the allopolyploid as in the maternal progenitor A. thaliana and significantly more expressed than in the paternal progenitor A. arenosa. However, expression differences of ß-amylases and GLUCAN-WATER DIKINASE1 were not statistically significantly elevated in the allopolyploid over progenitor expression levels. In contrast to allopolyploids, autopolyploid A. thaliana showed the same photosynthetic rate as diploids, indicating that polyploidization alone is likely not the reason for enhanced vigor in the allopolyploid. Taken together, our data suggest that the magnitude of heterosis in A. suecica is environmentally regulated, arises from more efficient photosynthesis, and, under specific conditions, leads to greater starch accumulation than in its progenitor species.


Assuntos
Arabidopsis/genética , Meio Ambiente , Vigor Híbrido/genética , Poliploidia , Arabidopsis/efeitos da radiação , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Glucose/metabolismo , Luz , Fotossíntese/efeitos da radiação , Especificidade da Espécie , Amido/metabolismo , Sacarose/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...