Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Front Immunol ; 14: 1148111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056774

RESUMO

In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B , Células Matadoras Naturais , Antivirais/uso terapêutico
2.
Int J Pharm ; 630: 122439, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36503846

RESUMO

Polymeric nanoparticles (NPs) are extremely promising for theranostic applications. However, their interest depends largely on their interactions with immune system, including the capacity to activate inflammation after their capture by macrophages. In the present study, we generated monodisperse poly(ethyl methacrylate) (PEMA) NPs loaded with hydrophobic photoluminescent gold nanoclusters (Au NCs) emitting in the NIR-II optical windows and studied their interaction in vitro with J774.1A macrophages. PEMA NPs showed an efficient time and dose dependent cellular uptake with up to 70 % of macrophages labelled in 24 h without detectable cell death. Interestingly, PEMA and Au-PEMA NPs induced an anti-inflammatory response and a strong down-regulation of nitric oxide level on lipopolysacharides (LPS) activated macrophages, but without influence on the levels of reactive oxygen species (ROS). These polymeric NPs may thus present a potential interest for the treatment of inflammatory diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Nanopartículas/química , Polímeros , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/química
3.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555845

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. The AKT pathway is often activated in HCC cases, and a longer exposure to tyrosine kinase inhibitors such as sorafenib may lead to over-activation of the AKT pathway, leading to HCC resistance. Here, we studied the efficacy of a new generation of allosteric AKT inhibitor, vevorisertib, alone or in combination with sorafenib. To identify specific adverse effects related to the background of cirrhosis, we used a diethylnitrosamine (DEN)-induced cirrhotic rat model. Vevorisertib was tested in vitro on Hep3B, HepG2, HuH7 and PLC/PRF cell lines. Rats were treated weekly with intra-peritoneal injections of DEN for 14 weeks to obtain cirrhosis with fully developed HCC. After that, rats were randomized into four groups (n = 7/group): control, sorafenib, vevorisertib and the combination of vevorisertib + sorafenib, and treated for 6 weeks. Tumor progression was followed by MRI. We demonstrated that the vevorisertib is a highly potent treatment, blocking the phosphorylation of AKT. The tumor progression in the rat liver was significantly reduced by treatment with vevorisertib + sorafenib (49.4%) compared to the control group (158.8%, p < 0.0001). Tumor size, tumor number and tumor cell proliferation were significantly reduced in both the vevorisertib group and vevorisertib + sorafenib groups compared to the control group. Sirius red staining showed an improvement in liver fibrosis by vevorisertib and the combination treatment. Moreover, vevorisertib + sorafenib treatment was associated with a normalization in the liver vasculature. Altogether, vevorisertib as a single agent and its combination with sorafenib exerted a strong suppression of tumor progression and improved liver fibrosis. Thus, results provide a rationale for testing vevorisertib in clinical settings and confirm the importance of targeting AKT in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células , Cirrose Hepática/tratamento farmacológico
4.
Chemistry ; 28(64): e202202293, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35989226

RESUMO

The pharmaceutical industry has a pervasive need for chiral specific molecules with optimal affinity for their biological targets. However, the mass production of such compounds is currently limited by conventional chemical routes, that are costly and have an environmental impact. Here, we propose an easy access to obtain new tetrahydroquinolines, a motif found in many bioactive compounds, that is rapid and cost effective. Starting from simple raw materials, the procedure uses a proline-catalyzed Mannich reaction followed by the addition of BF3 ⋅ OEt2 , which generates a highly electrophilic aza-ortho-quinone methide intermediate capable of reacting with different nucleophiles to form the diversely functionalized tetrahydroquinoline. Moreover, this enantioselective one-pot process provides access for the first time to tetrahydroquinolines with a cis-2,3 and trans-3,4 configuration. As proof of concept, we demonstrate that a three-step reaction sequence, from simple and inexpensive starting compounds and catalysts, can generate a BD2-selective BET bromodomain inhibitor with anti-inflammatory effect.


Assuntos
Antineoplásicos , Quinolinas , Estereoisomerismo , Catálise
5.
J Crohns Colitis ; 16(2): 286-300, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34286840

RESUMO

BACKGROUND AND AIMS: Inflammatory bowel diseases are highly debilitating conditions that require constant monitoring and life-long medication. Current treatments are focused on systemic administration of immunomodulatory drugs, but they have a broad range of undesirable side-effects. RNA interference is a highly specific endogenous mechanism that regulates the expression of the gene at the transcript level, which can be repurposed using exogenous short interfering RNA [siRNA] to repress expression of the target gene. While siRNA therapeutics can offer an alternative to existing therapies, with a high specificity critical for chronically administrated drugs, evidence of their potency compared to chemical kinase inhibitors used in clinics is still lacking in alleviating an adverse inflammatory response. METHODS: We provide a framework to select highly specific siRNA, with a focus on two kinases strongly involved in pro-inflammatory diseases, namely JAK1 and JAK3. Using western-blot, real-time quantitative PCR and large-scale analysis, we assessed the specificity profile of these siRNA drugs and compared their efficacy to the most recent and promising kinase inhibitors for Janus kinases [Jakinibs], tofacitinib and filgotinib. RESULTS: siRNA drugs can reach higher efficiency and selectivity at lower doses [5 pM vs 1 µM] than Jakinibs. Moreover, JAK silencing lasted up to 11 days, even with 6 h pulse transfection. CONCLUSIONS: The siRNA-based drugs developed hold the potential to develop more potent therapeutics for chronic inflammatory diseases.


Assuntos
Doenças Inflamatórias Intestinais , Janus Quinases , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Janus Quinases/genética , Janus Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais
6.
Cancers (Basel) ; 13(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34638465

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer. The majority of HCC cases are associated with liver fibrosis or cirrhosis developing from chronic liver injuries. The immune system of the liver contributes to the severity of tissue damage, the establishment of fibrosis and the disease's progression towards HCC. Herein, we provide a detailed characterization of the DEN-induced HCC rat model during fibrosis progression and HCC development with a special focus on the liver's inflammatory microenvironment. Fischer 344 male rats were treated weekly for 14 weeks with intra-peritoneal injections of 50 mg/kg DEN. The rats were sacrificed before starting DEN-injections at 0 weeks, after 8 weeks, 14 weeks and 20 weeks after the start of DEN-injections. We performed histopathological, immunohistochemical, RT-qPCR, RNA-seq and flow cytometry analysis. Data were compared between tumor and non-tumor samples from the DEN-treated versus untreated rats, as well as versus human HCCs. Chronic DEN injections lead to liver damage, hepatocytes proliferation, liver fibrosis and cirrhosis, disorganized vasculature, and a modulated immune microenvironment that mimics the usual events observed during human HCC development. The RNA-seq results showed that DEN-induced liver tumors in the rat model shared remarkable molecular characteristics with human HCC, especially with HCC associated with high proliferation. In conclusion, our study provides detailed insight into hepatocarcinogenesis in a commonly used model of HCC, facilitating the future use of this model for preclinical testing.

7.
Cells ; 10(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685651

RESUMO

Immune checkpoint molecules (ICM) are critical in maintaining immunologic homeostasis and participate in preventing or promoting autoimmune disease development. Exploring a large panel of intrahepatic inhibitory and stimulatory ICM is necessary for drawing a general picture of the immune alterations in autoimmune hepatitis (AIH). Here, we performed a multiparametric analysis of ICM, including PD-1, TIM3, LAG3, CTLA-4, OX40 and 4-1BB, and we determined their expression on intrahepatic lymphocyte subsets in untreated and in treated patients with AIH in comparison to normal liver tissue. AIH patient-derived liver tissue revealed the overexpression of ICM, mainly PD-1 and 4-1BB, as well as the strong correlation between PD-1+ CD8+ T-cell abundance and severity of AIH (alanine transaminase and aspartate transaminase levels). Our results show that the ICM play an important role in the loss of immune homeostasis in the liver, providing an attractive approach to investigate their role as targets for effective therapeutic interventions.


Assuntos
Doenças Autoimunes/imunologia , Proteínas de Checkpoint Imunológico/metabolismo , Hepatopatias/imunologia , Fígado/metabolismo , Doenças Autoimunes/metabolismo , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Fígado/patologia , Hepatopatias/metabolismo , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos
8.
Front Immunol ; 12: 722411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497612

RESUMO

Nonviral systems, such as lipid nanoparticles, have emerged as reliable methods to enable nucleic acid intracellular delivery. The use of cationic lipids in various formulations of lipid nanoparticles enables the formation of complexes with nucleic acid cargo and facilitates their uptake by target cells. However, due to their small size and highly charged nature, these nanocarrier systems can interact in vivo with antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages. As this might prove to be a safety concern for developing therapies based on lipid nanocarriers, we sought to understand how they could affect the physiology of APCs. In the present study, we investigate the cellular and metabolic response of primary macrophages or DCs exposed to the neutral or cationic variant of the same lipid nanoparticle formulation. We demonstrate that macrophages are the cells affected most significantly and that the cationic nanocarrier has a substantial impact on their physiology, depending on the positive surface charge. Our study provides a first model explaining the impact of charged lipid materials on immune cells and demonstrates that the primary adverse effects observed can be prevented by fine-tuning the load of nucleic acid cargo. Finally, we bring rationale to calibrate the nucleic acid load of cationic lipid nanocarriers depending on whether immunostimulation is desirable with the intended therapeutic application, for instance, gene delivery or messenger RNA vaccines.


Assuntos
Cátions/química , Técnicas de Transferência de Genes , Lipídeos/química , Lipossomos/química , Nanopartículas/química , Ácidos Nucleicos/administração & dosagem , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linhagem Celular , Sobrevivência Celular , Fenômenos Químicos , Citocinas/química , Portadores de Fármacos , Lipopolissacarídeos/química , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio
9.
Biomedicines ; 9(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918467

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, characterized by hepatic steatosis without any alcohol abuse. As the prevalence of NAFLD is rapidly increasing worldwide, important research activity is being dedicated to deciphering the underlying molecular mechanisms in order to define new therapeutic targets. To investigate these pathways and validate preclinical study, reliable, simple and reproducible tools are needed. For that purpose, animal models, more precisely, diet-induced NAFLD and nonalcoholic steatohepatitis (NASH) models, were developed to mimic the human disease. In this review, we focus on rat models, especially in the current investigation of the establishment of the dietary model of NAFLD and NASH in this species, compiling the different dietary compositions and their impact on histological outcomes and metabolic injuries, as well as external factors influencing the course of liver pathogenesis.

10.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670268

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related deaths worldwide, and its incidence is rising. HCC develops almost exclusively on the background of chronic liver inflammation, which can be caused by chronic alcohol consumption, viral hepatitis, or an unhealthy diet. The key role of chronic inflammation in the process of hepatocarcinogenesis, including in the deregulation of innate and adaptive immune responses, has been demonstrated. The inhibition of Akt (also known as Protein Kinase B) directly affects cancer cells, but this therapeutic strategy also exhibits indirect anti-tumor activity mediated by the modulation of the tumor microenvironment, as demonstrated by using Akt inhibitors AZD5363, MK-2206, or ARQ 092. Moreover, the isoforms of Akt converge and diverge in their designated roles, but the currently available Akt inhibitors fail to display an isoform specificity. Thus, selective Akt inhibition needs to be better explored in the context of HCC and its possible combination with immunotherapy. This review presents a compact overview of the current knowledge concerning the role of Akt in HCC and the effect of Akt inhibition on the HCC and liver tumor microenvironment.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Microambiente Tumoral , Aminopiridinas/uso terapêutico , Carcinoma Hepatocelular/enzimologia , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Imidazóis/uso terapêutico , Neoplasias Hepáticas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico
11.
Nanoscale ; 13(6): 3767-3781, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33555278

RESUMO

Neuroinflammation is a process common to several brain pathologies. Despites its medical relevance, it still remains poorly understood; there is therefore a need to develop new in vivo preclinical imaging strategies to monitor inflammatory processes longitudinally. We here present the development of a hybrid imaging nanoprobe named NP3, that was specifically designed to get internalized by phagocytic cells and imaged in vivo with MRI and bi-photon microscopy. NP3 is composed of a 16 nm core of gadolinium fluoride (GdF3), coated with bisphosphonate polyethylene glycol (PEG) and functionalized with a Lemke-type fluorophore. It has a hydrodynamic diameter of 28 ± 8 nm and a zeta potential of -42 ± 6 mV. The MR relaxivity ratio at 7 T is r1/r2 = 20; therefore, NP3 is well suited as a T2/T2* contrast agent. In vitro cytotoxicity assessments performed on four human cell lines revealed no toxic effects of NP3. In addition, NP3 is internalized by macrophages in vitro without inducing inflammation or cytotoxicity. In vivo, uptake of NP3 has been observed in the spleen and the liver. NP3 has a prolonged vascular remanence, which is an advantage for macrophage uptake in vivo. The proof-of-concept that NP3 may be used as a contrast agent targeting phagocytic cells is provided in an animal model of ischemic stroke in transgenic CX3CR1-GFP/+ mice using three complementary imaging modalities: MRI, intravital two-photon microscopy and phase contrast imaging with synchrotron X-rays. In summary, NP3 is a promising preclinical tool for the multiscale and multimodal investigation of neuroinflammation.


Assuntos
Meios de Contraste , Gadolínio , Animais , Imageamento por Ressonância Magnética , Imagem Multimodal , Polietilenoglicóis
12.
Cells ; 10(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430453

RESUMO

Gold nanoparticles (AuNPs) have demonstrated outstanding performance in many biomedical applications. Their safety is recognised; however, their effects on the immune system remain ill defined. Antigen-presenting cells (APCs) are immune cells specialised in sensing external stimulus and in capturing exogenous materials then delivering signals for the immune responses. We used primary macrophages (Ms) and dendritic cells (DCs) of mice as an APC model. Whereas AuNPs did not alter significantly Ms and DCs functions, the exposure to AuNPs affected differently Ms and DCs in their responses to subsequent stimulations. The secretion of inflammatory molecules like cytokines (IL-6, TNF-α), chemokine (MCP-1), and reactive oxygen species (ROS) were altered differently in Ms and DCs. Furthermore, the metabolic activity of Ms was affected with the increase of mitochondrial respiration and glycolysis, while only a minor effect was seen on DCs. Antigen presentation to T cells increased when DCs were exposed to AuNPs leading to stronger Th1, Th2, and Th17 responses. In conclusion, our data provide new insights into the complexity of the effects of AuNPs on the immune system. Although AuNPs may be considered as devoid of significant effect, they may induce discrete modifications on some functions that can differ among the immune cells.


Assuntos
Células Dendríticas/metabolismo , Ouro/farmacologia , Macrófagos/metabolismo , Nanopartículas Metálicas/química , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Epitopos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Ouro/toxicidade , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fagocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
13.
Nat Protoc ; 16(1): 327-351, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277630

RESUMO

Using siRNAs to genetically manipulate immune cells is important to both basic immunological studies and therapeutic applications. However, siRNA delivery is challenging because primary immune cells are often sensitive to the delivery materials and generate immune responses. We have recently developed an amphiphilic dendrimer that is able to deliver siRNA to a variety of cells, including primary immune cells. We provide here a protocol for the synthesis of this dendrimer, as well as siRNA delivery to immune cells such as primary T and B cells, natural killer cells, macrophages, and primary microglia. The dendrimer synthesis entails straightforward click coupling followed by an amidation reaction, and the siRNA delivery protocol requires simple mixing of the siRNA and dendrimer in buffer, with subsequent application to the primary immune cells to achieve effective and functional siRNA delivery. This dendrimer-mediated siRNA delivery largely outperforms the standard electroporation technique, opening a new avenue for functional and therapeutic studies of the immune system. The whole protocol encompasses the dendrimer synthesis, which takes 10 days; the primary immune cell preparation, which takes 3-10 d, depending on the tissue source and cell type; the dendrimer-mediated siRNA delivery; and subsequent functional assays, which take an additional 3-6 d.


Assuntos
Linfócitos B/metabolismo , Dendrímeros/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Linfócitos T/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Química Click , Dendrímeros/síntese química , Humanos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética
14.
Cancers (Basel) ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352852

RESUMO

Direct-acting antivirals (DAAs) are highly effective in targeting hepatitis C virus (HCV) infections, but the incidence of HCV-related hepatocellular carcinoma (HCC) remains still high. In this study, we investigated a cohort of HCV-infected patients treated with DAAs who were followed up for 4 years after sustained virological response (SVR) achievement. Patients who developed de novo HCC following DAA treatment were compared to matched controls who did not develop HCC. These control patients were selected based on DAA treatment, sex, age, fibrosis status, and platelet counts. We evaluated serum levels of 30 immune mediators before, during, at the end of, and three months after DAA treatment using Luminex technology. We identified the immune factors associated with de novo HCC occurrence following DAA treatment. Specifically, interleukin (IL)-4 and IL-13 levels were significantly higher before start of the DAA treatment in the serum of patients who later developed HCC than in controls and stayed higher at each subsequent time point. Least absolute shrinkage and selection operator (LASSO) regression revealed IL-13 as the only strong factor associated with HCC development in this cohort of HCV patients. The difference was observed already at baseline of DAA treatment, which confirms the existence of a specific immune profile in these patients who later develop HCC.

15.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722054

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with one of the highest mortality rates among solid cancers. It develops almost exclusively in the background of chronic liver inflammation, which can be caused by viral hepatitis, chronic alcohol consumption or an unhealthy diet. Chronic inflammation deregulates the innate and adaptive immune responses that contribute to the proliferation, survival and migration of tumor cells. The continuous communication between the tumor and its microenvironment components serves as the overriding force of the tumor against the body's defenses. The importance of this crosstalk between the tumor microenvironment and immune cells in the process of hepatocarcinogenesis has been shown, and therapeutic strategies modulating this communication have improved the outcomes of patients with liver cancer. To target this communication, an RNA interference (RNAi)-based approach can be used, an innovative and promising strategy that can disrupt the crosstalk at the transcriptomic level. Moreover, RNAi offers the advantage of specificity in comparison to the treatments currently used for HCC in clinics. In this review, we will provide the recent data pertaining to the modulation of a tumor and its microenvironment by using RNAi and its potential for therapeutic intervention in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Interferência de RNA , RNA Neoplásico , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
17.
Kidney Int Rep ; 4(10): 1463-1471, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31701056

RESUMO

INTRODUCTION: Silicon dioxide, produced as synthetic amorphous silica (SAS), is made of nanoparticles (NPs), either present as such or as agglomerates and aggregates, and is widely used in many types of food processes and products as an additive. To assess whether repeated, long-term exposure to SAS NPs may result in adverse effects, mice were exposed for 18 months via drinking water to NM-200, one of the reference nanostructured silica used for applications related to food, at 4.8 mg NM-200/kg body weight per day, a dose relevant to the estimated dietary exposure to SAS in humans. METHODS: The experiment focused on the kidney and liver as target organs and was carried out in parallel using 3 mouse lines (wild type and transgenic) differing for the expression of α-synuclein, that is, murine and human mutated (A53T). Sensitive determination of silicon revealed higher contents in liver and kidneys of NM-200-exposed mice compared with unexposed aged-matched controls. RESULTS: Histological abnormalities, such as vacuolization of tubular epithelial cells, were detected in all kidneys, as well as inflammatory responses that were also detected in livers of exposed animals. Less frequent but more deleterious, amyloidosis lesions were observed in glomeruli, associated with perivascular amyloid accumulation in liver. CONCLUSION: These histological findings, in conjunction with the observation of detectable deposition of silica, highlight that chronic oral intake of SAS may pose a health risk to humans and need to be examined further.

18.
Clin Transl Gastroenterol ; 10(7): e00058, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31295151

RESUMO

INTRODUCTION: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Today, a promising treatment strategy is focused on the enhancement of antitumor immune responses by immune checkpoint modification. However, as only 20% of patients with HCC are responders, identification of predictive factors is urgently required. Therefore, for the first time, the features of the intrahepatic and circulating immune system in patients with advanced-stage HCC, before and during the treatment, were analyzed. METHODS: We collected fresh HCC biopsies, along with adjacent tumor-free liver tissues and peripheral blood samples, from 21 patients with advanced HCC. Furthermore, we performed an extensive immunomonitoring of patients with HCC treated with sorafenib or programmed death (PD)-1/PD-L1 pathway blockade using multiparametric flow cytometry. RESULTS: We observed that regardless of the treatment, low baseline intratumoral CD4/CD8 T-cell ratio was associated with better overall survival (P = 0.0002). The baseline frequency of intratumoral PD-1 CD8 T cells was significantly lower in patients responding to sorafenib treatment than in the nonresponders (P = 0.0117), and the frequency of circulating PD-1 T cells increased with tumor progression (P = 0.0329). By contrast, responders to PD-1/PD-L1 pathway blockade showed a trend of high baseline frequency of intratumoral PD-1 CD8 T cells. Moreover, we observed a trend of LAG3 and TIM3 upregulation on circulating T cells in nonresponding patients to PD-1/PD-L1 pathway blockade. DISCUSSION: Immunosuppressive state, characterized by an enhanced intratumoral CD4/CD8 T-cell ratio, was associated with poor prognosis. Additionally, our results suggest that the frequency of intratumoral PD-1 CD8 T cells may serve as a biomarker to identify which individuals will benefit from which treatment and support the use of combination strategies.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Idoso , Antígenos CD/efeitos dos fármacos , Antígenos CD/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Progressão da Doença , Feminino , Receptor Celular 2 do Vírus da Hepatite A/efeitos dos fármacos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Imunoterapia/métodos , Masculino , Estadiamento de Neoplasias/métodos , Valor Preditivo dos Testes , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Sorafenibe/uso terapêutico , Regulação para Cima , Proteína do Gene 3 de Ativação de Linfócitos
19.
Ann Neurol ; 85(3): 406-420, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30635946

RESUMO

OBJECTIVE: The two related tumor necrosis factor members a proliferation-inducing ligand (APRIL) and B-cell activation factor (BAFF) are currently targeted in autoimmune diseases as B-cell regulators. In multiple sclerosis (MS), combined APRIL/BAFF blockade led to unexpected exacerbated inflammation in the central nervous system (CNS) of patients. Here, we investigate the role of the APRIL/BAFF axis in the CNS. METHODS: APRIL expression was analyzed in MS lesions by immunohistochemistry. The in vivo role of APRIL was assessed in the murine MS model, experimental autoimmune encephalitis (EAE). Functional in vitro studies were performed with human and mouse astrocytes. RESULTS: APRIL was expressed in lesions from EAE. In its absence, the disease was worst. Lesions from MS patients also showed APRIL expression upon infiltration of macrophages. Notably, all the APRIL secreted by these macrophages specifically targeted astrocytes. The upregulation of chondroitin sulfate proteoglycan, sometimes bearing chondroitin sulfate of type E sugar moieties, binding APRIL, in reactive astrocytes explained the latter selectivity. Astrocytes responded to APRIL by producing a sufficient amount of IL-10 to dampen antigen-specific T-cell proliferation and pathogenic cytokine secretion. Finally, an intraspinal delivery of recombinant APRIL before disease onset, shortly reduced EAE symptoms. Repeated intravenous injections of recombinant APRIL before and even at disease onset also had an effect. INTERPRETATION: Our data show that APRIL mediates an anti-inflammatory response from astrocytes in MS lesions. This protective activity is not shared with BAFF. ANN NEUROL 2019;85:406-420.


Assuntos
Astrócitos/metabolismo , Fator Ativador de Células B/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Adulto , Idoso , Animais , Astrócitos/imunologia , Astrócitos/patologia , Proliferação de Células , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/metabolismo , Citocinas/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Imuno-Histoquímica , Interleucina-10/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia
20.
Front Immunol ; 9: 2803, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574140

RESUMO

The aberrant expression of human endogenous retrovirus (HERV) elements of the HERV-W family has been associated with different diseases, including multiple sclerosis (MS). In particular, the expression of the envelope protein (Env) from the multiple sclerosis-associated retrovirus (MSRV), a member of HERV-W family and known for its potent proinflammatory activity, is repeatedly detected in the brain lesions and blood of MS patients. Furthermore, human herpesvirus 6 (HHV-6) infection has long been suspected to play a role in the pathogenesis of MS and neuroinflammation. We show here that both HHV-6A and stimulation of its receptor, transmembrane glycoprotein CD46, induce the expression of MSRV-Env. The engagement of extracellular domains SCR3 and SCR4 of CD46-Cyt1 isoform was required for MSRV-env transactivation, limiting thus the MSRV-Env induction to the CD46 ligands binding these domains, including C3b component of complement, specific monoclonal antibodies, and both infectious and UV-inactivated HHV-6A, but neither HHV-6B nor measles virus vaccine strain. Induction of MSRV-Env required CD46 Cyt-1 singling and was abolished by the inhibitors of protein kinase C. Finally, both membrane-expressed and secreted MSRV-Env trigger TLR4 signaling, displaying thus a proinflammatory potential, characteristic for this viral protein. These data expand the specter of HHV-6A effects in the modulation of the immune response and support the hypothesis that cross-talks between exogenous and endogenous viruses may contribute to inflammatory diseases and participate in neuroinflammation. Furthermore, they reveal a new function of CD46, known as an inhibitor of complement activation and receptor for several pathogens, in transactivation of HERV env genes, which may play an important role in the pathogenesis of inflammatory diseases.


Assuntos
Retrovirus Endógenos , Herpesvirus Humano 6 , Proteína Cofatora de Membrana , Esclerose Múltipla , Proteínas da Gravidez , Infecções por Roseolovirus , Linhagem Celular Tumoral , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Retrovirus Endógenos/metabolismo , Herpesvirus Humano 6/imunologia , Herpesvirus Humano 6/metabolismo , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Proteína Cofatora de Membrana/imunologia , Proteína Cofatora de Membrana/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/virologia , Proteínas da Gravidez/biossíntese , Proteínas da Gravidez/genética , Proteínas da Gravidez/imunologia , Domínios Proteicos , Infecções por Roseolovirus/genética , Infecções por Roseolovirus/imunologia , Infecções por Roseolovirus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...