Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109205, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38482496

RESUMO

The orbitofrontal cortex, one of the key neocortical areas in valuation and emotion, is critical for cognitive flexibility but its role in the consolidation of recently acquired information remains unclear. Here, we demonstrate orbitofrontal offline replay in the context of a place-reward association task on a maze with varying goal locations. When switches in place-reward coupling were applied, replay was enhanced relative to sessions with stable contingencies. Moreover, replay strength was positively correlated with the subsequent overnight change in behavioral performance. Interrogating relationships between orbitofrontal and hippocampal activity, we found that orbitofrontal and hippocampal replay could occur independently but became coordinated during a type of cortical state with strong spiking activity. These findings reveal a structured form of offline orbitofrontal ensemble activity that is correlated with cognitive flexibility required to adapt to changing task contingencies, and becomes associated with hippocampal replay only during a specific state of high cortical excitability.

2.
Nat Neurosci ; 27(4): 758-771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307971

RESUMO

Primary sensory cortices respond to crossmodal stimuli-for example, auditory responses are found in primary visual cortex (V1). However, it remains unclear whether these responses reflect sensory inputs or behavioral modulation through sound-evoked body movement. We address this controversy by showing that sound-evoked activity in V1 of awake mice can be dissociated into auditory and behavioral components with distinct spatiotemporal profiles. The auditory component began at approximately 27 ms, was found in superficial and deep layers and originated from auditory cortex. Sound-evoked orofacial movements correlated with V1 neural activity starting at approximately 80-100 ms and explained auditory frequency tuning. Visual, auditory and motor activity were expressed by different laminar profiles and largely segregated subsets of neuronal populations. During simultaneous audiovisual stimulation, visual representations remained dissociable from auditory-related and motor-related activity. This three-fold dissociability of auditory, motor and visual processing is central to understanding how distinct inputs to visual cortex interact to support vision.


Assuntos
Córtex Auditivo , Córtex Visual Primário , Animais , Camundongos , Estimulação Acústica , Estimulação Luminosa , Percepção Visual/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia
3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38314581

RESUMO

Neural circuits support behavioral adaptations by integrating sensory and motor information with reward and error-driven learning signals, but it remains poorly understood how these signals are distributed across different levels of the corticohippocampal hierarchy. We trained rats on a multisensory object-recognition task and compared visual and tactile responses of simultaneously recorded neuronal ensembles in somatosensory cortex, secondary visual cortex, perirhinal cortex, and hippocampus. The sensory regions primarily represented unisensory information, whereas hippocampus was modulated by both vision and touch. Surprisingly, the sensory cortices and the hippocampus coded object-specific information, whereas the perirhinal cortex did not. Instead, perirhinal cortical neurons signaled trial outcome upon reward-based feedback. A majority of outcome-related perirhinal cells responded to a negative outcome (reward omission), whereas a minority of other cells coded positive outcome (reward delivery). Our results highlight a distributed neural coding of multisensory variables in the cortico-hippocampal hierarchy. Notably, the perirhinal cortex emerges as a crucial region for conveying motivational outcomes, whereas distinct functions related to object identity are observed in the sensory cortices and hippocampus.


Assuntos
Córtex Perirrinal , Ratos , Animais , Hipocampo/fisiologia , Percepção Visual/fisiologia , Lobo Parietal , Recompensa
4.
Cereb Cortex ; 33(13): 8247-8264, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37118890

RESUMO

Cortical computations require coordination of neuronal activity within and across multiple areas. We characterized spiking relationships within and between areas by quantifying coupling of single neurons to population firing patterns. Single-neuron population coupling (SNPC) was investigated using ensemble recordings from hippocampal CA1 region and somatosensory, visual, and perirhinal cortices. Within-area coupling was heterogeneous across structures, with area CA1 showing higher levels than neocortical regions. In contrast to known anatomical connectivity, between-area coupling showed strong firing coherence of sensory neocortices with CA1, but less with perirhinal cortex. Cells in sensory neocortices and CA1 showed positive correlations between within- and between-area coupling; these were weaker for perirhinal cortex. All four areas harbored broadcasting cells, connecting to multiple external areas, which was uncorrelated to within-area coupling strength. When examining correlations between SNPC and spatial coding, we found that, if such correlations were significant, they were negative. This result was consistent with an overall preservation of SNPC across different brain states, suggesting a strong dependence on intrinsic network connectivity. Overall, SNPC offers an important window on cell-to-population synchronization in multi-area networks. Instead of pointing to specific information-coding functions, our results indicate a primary function of SNPC in dynamically organizing communication in systems composed of multiple, interconnected areas.


Assuntos
Córtex Perirrinal , Ratos , Animais , Hipocampo , Neurônios/fisiologia , Região CA1 Hipocampal/fisiologia , Lobo Parietal
5.
Cereb Cortex ; 33(12): 7369-7385, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36967108

RESUMO

Neurons in primary visual cortex (V1) may not only signal current visual input but also relevant contextual information such as reward expectancy and the subject's spatial position. Such contextual representations need not be restricted to V1 but could participate in a coherent mapping throughout sensory cortices. Here, we show that spiking activity coherently represents a location-specific mapping across auditory cortex (AC) and lateral, secondary visual cortex (V2L) of freely moving rats engaged in a sensory detection task on a figure-8 maze. Single-unit activity of both areas showed extensive similarities in terms of spatial distribution, reliability, and position coding. Importantly, reconstructions of subject position based on spiking activity displayed decoding errors that were correlated between areas. Additionally, we found that head direction, but not locomotor speed or head angular velocity, was an important determinant of activity in AC and V2L. By contrast, variables related to the sensory task cues or to trial correctness and reward were not markedly encoded in AC and V2L. We conclude that sensory cortices participate in coherent, multimodal representations of the subject's sensory-specific location. These may provide a common reference frame for distributed cortical sensory and motor processes and may support crossmodal predictive processing.


Assuntos
Córtex Auditivo , Córtex Visual , Ratos , Animais , Reprodutibilidade dos Testes , Neurônios/fisiologia , Córtex Auditivo/fisiologia , Córtex Visual/fisiologia
7.
Nat Commun ; 13(1): 2864, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606448

RESUMO

Primary sensory areas constitute crucial nodes during perceptual decision making. However, it remains unclear to what extent they mainly constitute a feedforward processing step, or rather are continuously involved in a recurrent network together with higher-order areas. We found that the temporal window in which primary visual cortex is required for the detection of identical visual stimuli was extended when task demands were increased via an additional sensory modality that had to be monitored. Late-onset optogenetic inactivation preserved bottom-up, early-onset responses which faithfully encoded stimulus features, and was effective in impairing detection only if it preceded a late, report-related phase of the cortical response. Increasing task demands were marked by longer reaction times and the effect of late optogenetic inactivation scaled with reaction time. Thus, independently of visual stimulus complexity, multisensory task demands determine the temporal requirement for ongoing sensory-related activity in V1, which overlaps with report-related activity.


Assuntos
Córtex Visual , Percepção Visual , Percepção Auditiva/fisiologia , Optogenética , Estimulação Luminosa , Tempo de Reação/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
8.
Cell Rep ; 31(6): 107636, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402272

RESUMO

We act upon stimuli in our surrounding environment by gathering the multisensory information they convey and by integrating this information to decide on a behavioral action. We hypothesized that the anterolateral secondary visual cortex (area AL) of the mouse brain may serve as a hub for sensorimotor transformation of audiovisual information. We imaged neuronal activity in primary visual cortex (V1) and AL of the mouse during a detection task using visual, auditory, and audiovisual stimuli. We found that AL neurons were more sensitive to weak uni- and multisensory stimuli compared to V1. Depending on contrast, different subsets of AL and V1 neurons showed cross-modal modulation of visual responses. During audiovisual stimulation, AL neurons showed stronger differentiation of behaviorally reported versus unreported stimuli compared to V1, whereas V1 showed this distinction during unisensory visual stimulation. Thus, neural population activity in area AL correlates more closely with multisensory detection behavior than V1.


Assuntos
Percepção Auditiva/genética , Neurônios/metabolismo , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/genética , Animais , Humanos , Camundongos
9.
Cell Rep ; 29(12): 3859-3871.e6, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851919

RESUMO

In addition to coding a subject's location in space, the hippocampus has been suggested to code social information, including the spatial position of conspecifics. "Social place cells" have been reported for tasks in which an observer mimics the behavior of a demonstrator. We examine whether rat hippocampal neurons may encode the behavior of a minirobot, but without requiring the animal to mimic it. Rather than finding social place cells, we observe that robot behavioral patterns modulate place fields coding animal position. This modulation may be confounded by correlations between robot movement and changes in the animal's position. Although rat position indeed significantly predicts robot behavior, we find that hippocampal ensembles code additional information about robot movement patterns. Fast-spiking interneurons are particularly informative about robot position and global behavior. In conclusion, when the animal's own behavior is conditional on external agents, the hippocampus multiplexes information about self and others.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/fisiologia , Condicionamento Psicológico , Interneurônios/fisiologia , Orientação/fisiologia , Robótica , Comportamento Espacial/fisiologia , Animais , Comportamento Animal , Região CA1 Hipocampal/citologia , Interneurônios/citologia , Masculino , Movimento , Ratos , Percepção Espacial
10.
PeerJ Comput Sci ; 3: e142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-34722870

RESUMO

Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested and are hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...