Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4739, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834613

RESUMO

The overexpression of the ecotropic viral integration site-1 gene (EVI1/MECOM) marks the most lethal acute myeloid leukemia (AML) subgroup carrying chromosome 3q26 abnormalities. By taking advantage of the intersectionality of high-throughput cell-based and gene expression screens selective and pan-histone deacetylase inhibitors (HDACis) emerge as potent repressors of EVI1. To understand the mechanism driving on-target anti-leukemia activity of this compound class, here we dissect the expression dynamics of the bone marrow leukemia cells of patients treated with HDACi and reconstitute the EVI1 chromatin-associated co-transcriptional complex merging on the role of proliferation-associated 2G4 (PA2G4) protein. PA2G4 overexpression rescues AML cells from the inhibitory effects of HDACis, while genetic and small molecule inhibition of PA2G4 abrogates EVI1 in 3q26 AML cells, including in patient-derived leukemia xenografts. This study positions PA2G4 at the crosstalk of the EVI1 leukemogenic signal for developing new therapeutics and urges the use of HDACis-based combination therapies in patients with 3q26 AML.


Assuntos
Cromossomos Humanos Par 3 , Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Proteína do Locus do Complexo MDS1 e EVI1 , Proteogenômica , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromossomos Humanos Par 3/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Proteína do Locus do Complexo MDS1 e EVI1/genética , Proteogenômica/métodos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nat Commun ; 15(1): 1203, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331987

RESUMO

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , DNA Helicases/metabolismo , Reprogramação Metabólica , Reparo do DNA , Dano ao DNA
3.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865225

RESUMO

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE: Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.

4.
Cell Death Dis ; 13(6): 551, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710782

RESUMO

Genomic studies have identified recurrent somatic alterations in genes involved in DNA methylation and post-translational histone modifications in acute lymphoblastic leukemia (ALL), suggesting new opportunities for therapeutic interventions. In this study, we identified G9a/EHMT2 as a potential target in T-ALL through the intersection of epigenome-centered shRNA and chemical screens. We subsequently validated G9a with low-throughput CRISPR-Cas9-based studies targeting the catalytic G9a SET-domain and the testing of G9a chemical inhibitors in vitro, 3D, and in vivo T-ALL models. Mechanistically we determined that G9a repression promotes lysosomal biogenesis and autophagic degradation associated with the suppression of sestrin2 (SESN2) and inhibition of glycogen synthase kinase-3 (GSK-3), suggesting that in T-ALL glycolytic dependent pathways are at least in part under epigenetic control. Thus, targeting G9a represents a strategy to exhaust the metabolic requirement of T-ALL cells.


Assuntos
Histona-Lisina N-Metiltransferase , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Metilação de DNA/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Linfócitos T/metabolismo
6.
Nat Med ; 28(3): 557-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241842

RESUMO

Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Síndromes Mielodisplásicas , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Células-Tronco Hematopoéticas/patologia , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas
7.
Nat Commun ; 12(1): 6850, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824242

RESUMO

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.


Assuntos
Hematopoese/fisiologia , Encurtamento do Telômero/fisiologia , Animais , Transtornos da Insuficiência da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea/metabolismo , Transtornos da Insuficiência da Medula Óssea/patologia , Autorrenovação Celular , Reprogramação Celular , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferons/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Análise de Célula Única , Telômero/química , Telômero/fisiologia , Encurtamento do Telômero/genética
8.
J Hematol Oncol ; 14(1): 8, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407740

RESUMO

P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Receptores Notch/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores Notch/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/análogos & derivados , Tapsigargina/farmacologia , Tapsigargina/uso terapêutico
9.
Cell Chem Biol ; 27(6): 678-697.e13, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32386594

RESUMO

The identification of SERCA (sarco/endoplasmic reticulum calcium ATPase) as a target for modulating gain-of-function NOTCH1 mutations in Notch-dependent cancers has spurred the development of this compound class for cancer therapeutics. Despite the innate toxicity challenge associated with SERCA inhibition, we identified CAD204520, a small molecule with better drug-like properties and reduced off-target Ca2+ toxicity compared with the SERCA inhibitor thapsigargin. In this work, we describe the properties and complex structure of CAD204520 and show that CAD204520 preferentially targets mutated over wild-type NOTCH1 proteins in T cell acute lymphoblastic leukemia (T-ALL) and mantle cell lymphoma (MCL). Uniquely among SERCA inhibitors, CAD204520 suppresses NOTCH1-mutated leukemic cells in a T-ALL xenografted model without causing cardiac toxicity. This study supports the development of SERCA inhibitors for Notch-dependent cancers and extends their application to cases with isolated mutations in the PEST degradation domain of NOTCH1, such as MCL or chronic lymphocytic leukemia (CLL).


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptor Notch1/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Mutação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226848

RESUMO

Chemoresistance is a major cause of recurrence and death from T-cell acute lymphoblastic leukemia (T-ALL), both in adult and pediatric patients. In the majority of cases, drug-resistant disease is treated by selecting a combination of other drugs, without understanding the molecular mechanisms by which malignant cells escape chemotherapeutic treatments, even though a more detailed genomic characterization and the identification of actionable disease targets may enable informed decision of new agents to improve patient outcomes. In this work, we describe pathways of resistance to common chemotherapeutic agents including glucocorticoids and review the resistance mechanisms to targeted therapy such as IL7R, PI3K-AKT-mTOR, NOTCH1, BRD4/MYC, Cyclin D3: CDK4/CDK6, BCL2 inhibitors, and selective inhibitors of nuclear export (SINE). Finally, to overcome the limitations of the current trial-and-error method, we summarize the experiences of anti-cancer drug sensitivity resistance profiling (DSRP) approaches as a rapid and relevant strategy to infer drug activity and provide functional information to assist clinical decision one patient at a time.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Humanos , Terapia de Alvo Molecular/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(43): E9086-E9095, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073105

RESUMO

An integrated genomic and functional analysis to elucidate DNA damage signaling factors promoting self-renewal of glioma stem cells (GSCs) identified proliferating cell nuclear antigen (PCNA)-associated factor (PAF) up-regulation in glioblastoma. PAF is preferentially overexpressed in GSCs. Its depletion impairs maintenance of self-renewal without promoting differentiation and reduces tumor-initiating cell frequency. Combined transcriptomic and metabolomic analyses revealed that PAF supports GSC maintenance, in part, by influencing DNA replication and pyrimidine metabolism pathways. PAF interacts with PCNA and regulates PCNA-associated DNA translesion synthesis (TLS); consequently, PAF depletion in combination with radiation generated fewer tumorspheres compared with radiation alone. Correspondingly, pharmacological impairment of DNA replication and TLS phenocopied the effect of PAF depletion in compromising GSC self-renewal and radioresistance, providing preclinical proof of principle that combined TLS inhibition and radiation therapy may be a viable therapeutic option in the treatment of glioblastoma multiforme (GBM).


Assuntos
Neoplasias Encefálicas/radioterapia , Proteínas de Transporte/genética , Glioblastoma/radioterapia , Células-Tronco Neoplásicas/efeitos da radiação , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Pirimidinas/biossíntese , Tolerância a Radiação , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Cell ; 32(1): 88-100.e6, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28669490

RESUMO

Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.


Assuntos
Mieloma Múltiplo/genética , Proteína do Fator Nuclear 45/fisiologia , Splicing de RNA/genética , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Humanos , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Fator de Processamento U2AF/metabolismo , Células Tumorais Cultivadas , Proteína 1 de Ligação a Y-Box/metabolismo
14.
Leuk Res ; 44: 1-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26970171

RESUMO

EZH2 genetic mutations are common in myelodysplastic syndrome (MDS), which implies that this gene has a pathophysiological role in the disease. To further characterize molecular alterations of EZH2, and their potential prognostic impact in MDS, we assessed EZH2 RNA expression in primary bone marrow CD34+ cells from 78 patients. We found that 47% of patients have reduced EZH2 expression compared to normal controls. Further analyses revealed that EZH2 is significantly underexpressed in patients bearing chromosome 7 or 7q deletions (7-alt) when compared to controls, diploid patients, and patients with other cytogenetic alterations (p<0.05). In survival analysis, we found a non-significant trend toward overall survival (OS) being better among patients with EZH2 underexpression (median OS 55 vs. 36 months; p=0.71). Importantly, this trend became significant when the analysis was restricted to the subset of cases without alterations in chromosome 7 (62 vs. 36 months; p=0.033). Furthermore, our previous work has identified a spectrum of innate immune genes in MDS CD34+ cells that are deregulated via abnormal promoter histone methylation. Because EZH2 is a key regulator of histone methylation, we assessed the relationship between deregulation of these genes and EZH2 underexpression. We observed that the mRNA levels of 11 immune genes were higher in the EZH2 underexpression group and that immune gene expression was significantly higher in patients with concomitant EZH2 underexpression and KDM6B (also known as JMJD3, an H3K27 demethylase) overexpression. Taken together, these data indicate that EZH2 underexpression may have unique impact on the molecular pathogenesis and prognosis in MDS and be an important marker for patients without chromosome 7 alteration.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Síndromes Mielodisplásicas/genética , Complexo Repressor Polycomb 2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/patologia , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas
15.
Cancer Cell ; 27(5): 644-57, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25965571

RESUMO

Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation.


Assuntos
Diferenciação Celular/genética , Hematopoese/genética , Síndromes Mielodisplásicas/genética , Telômero , Animais , Haploinsuficiência , Humanos , Camundongos , Síndromes Mielodisplásicas/patologia , Proteínas Nucleares/genética , Splicing de RNA , Ribonucleoproteínas/genética , Fatores de Processamento de Serina-Arginina
16.
Cancer Res ; 75(6): 1091-101, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25736685

RESUMO

Mutated KRAS (KRAS*) is a fundamental driver in the majority of pancreatic ductal adenocarcinomas (PDAC). Using an inducible mouse model of KRAS*-driven PDAC, we compared KRAS* genetic extinction with pharmacologic inhibition of MEK1 in tumor spheres and in vivo. KRAS* ablation blocked proliferation and induced apoptosis, whereas MEK1 inhibition exerted cytostatic effects. Proteomic analysis evidenced that MEK1 inhibition was accompanied by a sustained activation of the PI3K-AKT-MTOR pathway and by the activation of AXL, PDGFRa, and HER1-2 receptor tyrosine kinases (RTK) expressed in a large proportion of human PDAC samples analyzed. Although single inhibition of each RTK alone or plus MEK1 inhibitors was ineffective, a combination of inhibitors targeting all three coactivated RTKs and MEK1 was needed to inhibit proliferation and induce apoptosis in both mouse and human low-passage PDAC cultures. Importantly, constitutive AKT activation, which may mimic the fraction of AKT2-amplified PDAC, was able to bypass the induction of apoptosis caused by KRAS* ablation, highlighting a potential inherent resistance mechanism that may inform the clinical application of MEK inhibitor therapy. This study suggests that combinatorial-targeted therapies for pancreatic cancer must be informed by the activation state of each putative driver in a given treatment context. In addition, our work may offer explanative and predictive power in understanding why inhibitors of EGFR signaling fail in PDAC treatment and how drug resistance mechanisms may arise in strategies to directly target KRAS.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia
17.
Nature ; 514(7524): 628-32, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25119024

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Autofagia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Glicólise , Lisossomos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mutação/genética , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Recidiva , Transdução de Sinais , Neoplasias Pancreáticas
18.
Cell Div ; 8: 11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23915323

RESUMO

BACKGROUND: We previously reported that a pool of low molecular weight peptides can be extracted by alkali treatment of DNA preparations obtained from prokaryotic and eukaryotic cells after intensive deproteinization. This class of peptides, isolated from wheat bud chromatin, induces growth inhibition, DNA damage, G2 checkpoint activation and apoptosis in HeLa cells. In this work we studied their mechanism of action by investigating their ability to interfere with DNA synthesis. METHODS: BrdUrd comet assays were used to detect DNA replication defects during S phase. DNA synthesis, cell proliferation, cell cycle progression and DNA damage response pathway activation were assessed using 3H-thymidine incorporation, DNA flow cytometry and Western blotting, respectively. RESULTS: BrdUrd labelling close to DNA strand discontinuities (comet tails) detects the number of active replicons. This number was significantly higher in treated cells (compared to controls) from entry until mid S phase, but markedly lower in late S phase, indicating the occurrence of defective DNA synthesis. In mid S phase the treated cells showed less 3H-thymidine incorporation with respect to the controls, which supports an early arrest of DNA synthesis. DNA damage response activation was also shown in both p53-defective HeLa cells and p53-proficient U2OS cells by the detection of the phosphorylated form of H2AX after peptide treatment. These events were accompanied in both cell lines by an increase in p21 levels and, in U2OS cells, of phospho-p53 (Ser15) levels. At 24 h of recovery after peptide treatment the cell cycle phase distribution was similar to that seen in controls and CDK1 kinase accumulation was not detected. CONCLUSION: The data reported here show that the antiproliferative effect exhibited by these chromatin peptides results from their ability to induce genomic stress during DNA synthesis. This effect seems to be S-phase specific since surviving cells are able to progress through their normal cell cycle when the peptide fraction is removed from the culture medium. It is likely that the subsequent apoptosis is a consequence of the failed attempt of the tumour cells to repair the DNA damage induced by the peptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...