Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 118(3): 643-656, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31952804

RESUMO

Synaptotagmin-1 (Syt1) is a calcium sensor protein that is critical for neurotransmission and is therefore extensively studied. Here, we use pairs of optically trapped beads coated with SNARE-free synthetic membranes to investigate Syt1-induced membrane remodeling. This activity is compared with that of Doc2b, which contains a conserved C2AB domain and induces membrane tethering and hemifusion in this cell-free model. We find that the soluble C2AB domain of Syt1 strongly affects the probability and strength of membrane-membrane interactions in a strictly Ca2+- and protein-dependent manner. Single-membrane loading of Syt1 yielded the highest probability and force of membrane interactions, whereas in contrast, Doc2b was more effective after loading both membranes. A lipid-mixing assay with confocal imaging reveals that both Syt1 and Doc2b are able to induce hemifusion; however, significantly higher Syt1 concentrations are required. Consistently, both C2AB fragments cause a reduction in the membrane-bending modulus, as measured by a method based on atomic force microscopy. This lowering of the energy required for membrane deformation may contribute to Ca2+-induced fusion.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio , Fusão de Membrana , Proteínas do Tecido Nervoso , Sinaptotagmina I , Cálcio/metabolismo , Humanos , Ligação Proteica , Proteínas SNARE/metabolismo , Transmissão Sináptica , Sinaptotagmina I/metabolismo
2.
Neurocase ; 25(6): 259-262, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31522586

RESUMO

Purpose: o report and describe cognitive impairments during lenalidomide treatment in three patients. Despite the relevant clinical impact of chemotherapy-related cognitive deficit (known as "chemobrain effect"), very few data are available in the literature. Methods: We present three subjects who developed cognitive impairment during treatment with lenalidomide. Their neuropsychological assessment was evaluated in order to better define the cognitive areas involved. For each patient medical history, drug therapy, physical examination and other instrumental tests (brain CT scan and/or MRI scan, FDG-PET and electroencephalography) were collected. Results: In all patients, we observed an homogeneous neuropsychological pattern characterized by long-term verbal and visuospatial memory deficits, and decline in attentional and executive functions. Conclusions: Lenalidomide treatments can determine severe cognitive impairments especially in elderly patients. Our data suggest the need for a careful evaluation of cognitive decline risk before and after drug administration. However, larger studies are required to confirm our findings.


Assuntos
Antineoplásicos/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Lenalidomida/efeitos adversos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/psicologia , Idoso , Feminino , Humanos , Masculino , Mieloma Múltiplo/complicações , Testes Neuropsicológicos
3.
Nano Lett ; 19(8): 5746-5753, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31368710

RESUMO

While the structure of a multitude of viral particles has been resolved to atomistic detail, their assembly pathways remain largely elusive. Key unresolved issues are particle nucleation, particle growth, and the mode of genome compaction. These issues are difficult to address in bulk approaches and are effectively only accessible by the real-time tracking of assembly dynamics of individual particles. This we do here by studying the assembly into rod-shaped viruslike particles (VLPs) of artificial capsid polypeptides. Using fluorescence optical tweezers, we establish that small oligomers perform one-dimensional diffusion along the DNA. Larger oligomers are immobile and nucleate VLP growth. A multiplexed acoustic force spectroscopy approach reveals that DNA is compacted in regular steps, suggesting packaging via helical wrapping into a nucleocapsid. By reporting how real-time assembly tracking elucidates viral nucleation and growth principles, our work opens the door to a fundamental understanding of the complex assembly pathways of both VLPs and naturally evolved viruses.


Assuntos
Nucleocapsídeo/química , Peptídeos/química , Vírion/química , DNA Viral/química , Microscopia Confocal , Modelos Moleculares , Pinças Ópticas , Análise Espectral
4.
Nanoscale ; 10(11): 5318-5324, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29504612

RESUMO

Small multilamellar vesicles may have benefits over unilamellar vesicles for drug delivery, such as an increased volume for hydrophobic drugs. In addition, their altered mechanical properties might be beneficial for cellular uptake. Here, we show how atomic force microscopy (AFM) can be used to detect and characterize multilamellar vesicles. We quantify the size of each break event occurring during AFM nanoindentations, which shows good agreement with the thickness of supported lipid bilayers. Analyzing the size and number of these events for individual vesicles allows us to distinguish between vesicles consisting of 1 up to 5 bilayers. We validate these results by comparison with correlative cryo-electron microscopy (cryo-EM) data at the vesicle population level. Finally, we quantify the vesicle geometry and mechanical properties, and show that with additional bilayers adherent vesicles are more spherical and stiffer. Surprisingly, at ∼20% stiffening for each additional bilayer, the vesicle stiffness scales only weakly with lamellarity. Our results show the potential of AFM for studying liposomal nanoparticles and suggest that small multilamellar vesicles may have beneficial mechanical properties for cellular uptake.


Assuntos
Bicamadas Lipídicas , Microscopia de Força Atômica , Nanopartículas , Lipossomas Unilamelares , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas
5.
Proc Natl Acad Sci U S A ; 111(42): 15090-5, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288749

RESUMO

During recombinational repair of double-stranded DNA breaks, RAD51 recombinase assembles as a nucleoprotein filament around single-stranded DNA to form a catalytically proficient structure able to promote homology recognition and strand exchange. Mediators and accessory factors guide the action and control the dynamics of RAD51 filaments. Elucidation of these control mechanisms necessitates development of approaches to quantitatively probe transient aspects of RAD51 filament dynamics. Here, we combine fluorescence microscopy, optical tweezers, and microfluidics to visualize the assembly of RAD51 filaments on bare single-stranded DNA and quantify the process with single-monomer sensitivity. We show that filaments are seeded from RAD51 nuclei that are heterogeneous in size. This heterogeneity appears to arise from the energetic balance between RAD51 self-assembly in solution and the size-dependent interaction time of the nuclei with DNA. We show that nucleation intrinsically is substrate selective, strongly favoring filament formation on bare single-stranded DNA. Furthermore, we devised a single-molecule fluorescence recovery after photobleaching assay to independently observe filament nucleation and growth, permitting direct measurement of their contributions to filament formation. Our findings yield a comprehensive, quantitative understanding of RAD51 filament formation on bare single-stranded DNA that will serve as a basis to elucidate how mediators help RAD51 filament assembly and accessory factors control filament dynamics.


Assuntos
DNA de Cadeia Simples/química , Rad51 Recombinase/química , Núcleo Celular/metabolismo , Corantes Fluorescentes/química , Humanos , Funções Verossimilhança , Microfluídica , Microscopia de Fluorescência , Pinças Ópticas , RNA Interferente Pequeno/metabolismo , Recombinação Genética , Reprodutibilidade dos Testes , Processos Estocásticos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...