Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 85(4): 659-671, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32237220

RESUMO

The synthesis and characterization of the two new open-chain ligands 1,15-bis-[6-(2,2'-bipyridyl)]-2,5,8,11,14-pentaaza-octadecane (L1) and 1,15-bis-[2-(1,10-phenanthroline)-9-methyl]-2,5,8,11,14-pentaazaoctadecane (L2), both featuring a tetraethylenpentaamine chain linking via methylene bridges the 6 and 2 positions of two identical 2,2'-bipyridyl (bpy) and 9-methyl-1,10-phenanthroline (9-methyl-phen) moieties respectively, are reported. Their protonation and binding ability for Cu2+ , Zn2+ , Cd2+ and Pb2+ have been studied by coupling potentiometric titrations with UV-vis absorption and fluorescence emission measurements in water. L1 and L2 afford stable mono- and dinuclear complexes, in which the metal ion is bound by a single bpy or 9-methyl-phen unit and the amine groups on the aliphatic chain. However, L1 displays a greater binding ability for Cu2+ and Zn2+ with respect to L2, the stability constants of the [ML1]2+ complexes being 21.8 (Cu2+ ) and 19.4 (Zn2+ ) log units vs 20.34 and 16.8 log. units for the corresponding L2 species. Among all the metal ions tested, only the Zn2+ complex with L2 features an enhanced fluorescence emission at neutral pH, thanks to the simultaneous binding of one Zn2+ ion and H+ ion(s), that inhibits any possible photoinduced electron transfer (PET) process from the amine donors to the excited phen moiety. Binding of a second metal switches off the emission again.

2.
ChemSusChem ; 7(9): 2432-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25082272

RESUMO

Organometallic fuel cells catalyze the selective electrooxidation of renewable diols, simultaneously providing high power densities and chemicals of industrial importance. It is shown that the unique organometallic complex [Rh(OTf)(trop2NH)(PPh3)] employed as molecular active site in an anode of an OMFC selectively oxidizes a number of renewable diols, such as ethylene glycol , 1,2-propanediol (1,2-P), 1,3-propanediol (1,3-P), and 1,4-butanediol (1,4-B) to their corresponding mono-carboxylates. The electrochemical performance of this molecular catalyst is discussed, with the aim to achieve cogeneration of electricity and valuable chemicals in a highly selective electrooxidation from diol precursors.


Assuntos
Fontes de Energia Bioelétrica , Glicóis/química , Compostos Organometálicos/química , Eletroquímica , Oxirredução , Especificidade por Substrato
3.
ChemSusChem ; 6(3): 518-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404853

RESUMO

The electrooxidation of ethylene glycol (EG) and glycerol (G) has been studied: in alkaline media, in passive as well as active direct ethylene glycol fuel cells (DEGFCs), and in direct glycerol fuel cells (DGFCs) containing Pd-(Ni-Zn)/C as an anode electrocatalyst, that is, Pd nanoparticles supported on a Ni-Zn phase. For comparison, an anode electrocatalyst containing Pd nanoparticles (Pd/C) has been also investigated. The oxidation of EG and G has primarily been investigated in half cells. The results obtained have highlighted the excellent electrocatalytic activity of Pd-(Ni-Zn)/C in terms of peak current density, which is as high as 3300 A g(Pd)(-1) for EG and 2150 A g(Pd)(-1) for G. Membrane-electrode assemblies (MEA) have been fabricated using Pd-(Ni-Zn)/C anodes, proprietary Fe-Co/C cathodes, and Tokuyama A-201 anion-exchange membranes. The MEA performance has been evaluated in either passive or active cells fed with aqueous solutions of 5 wt % EG and 5 wt % G. In view of the peak-power densities obtained in the temperature range from 20 to 80 °C, at Pd loadings as low as 1 mg cm(-2) at the anode, these results show that Pd-(Ni-Zn)/C can be classified amongst the best performing electrocatalysts ever reported for EG and G oxidation.


Assuntos
Álcoois/química , Carbono/química , Fontes de Energia Elétrica , Etilenoglicol/química , Glicerol/química , Metais Pesados/química , Adsorção , Catálise , Eletroquímica , Eletrodos , Nanoestruturas/química , Níquel/química , Oxirredução , Oxigênio/química , Paládio/química , Zinco/química
4.
ChemSusChem ; 5(7): 1266-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22517591

RESUMO

Pd nanoparticles have been generated by performing an electroless procedure on a mixed ceria (CeO(2))/carbon black (Vulcan XC-72) support. The resulting material, Pd-CeO(2)/C, has been characterized by means of transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray diffraction (XRD) techniques. Electrodes coated with Pd-CeO(2)/C have been scrutinized for the oxidation of ethanol in alkaline media in half cells as well as in passive and active direct ethanol fuel cells (DEFCs). Membrane electrode assemblies have been fabricated using Pd-CeO(2)/C anodes, proprietary Fe-Co cathodes, and Tokuyama anion-exchange membranes. The monoplanar passive and active DEFCs have been fed with aqueous solutions of 10 wt% ethanol and 2 M KOH, supplying power densities as high as 66 mW cm(-2) at 25 °C and 140 mW cm(-2) at 80 °C. A comparison with a standard anode electrocatalyst containing Pd nanoparticles (Pd/C) has shown that, at even metal loading and experimental conditions, the energy released by the cells with the Pd-CeO(2)/C electrocatalyst is twice as much as that supplied by the cells with the Pd/C electrocatalyst. A cyclic voltammetry study has shown that the co-support ceria contributes to the remarkable decrease of the onset oxidation potential of ethanol. It is proposed that ceria promotes the formation at low potentials of species adsorbed on Pd, Pd(I)-OH(ads), that are responsible for ethanol oxidation.


Assuntos
Cério/química , Fontes de Energia Elétrica , Eletroquímica/métodos , Etanol/química , Membranas Artificiais , Paládio/química , Polímeros/química , Nanopartículas Metálicas/química , Oxirredução
6.
ChemSusChem ; 3(7): 851-5, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20572287

RESUMO

The selective and simultaneous production of hydrogen and chemicals from renewable alcohols, such as ethanol, glycerol, and ethylene glycol, can be accomplished by means of electrolyzers in which the anode electrocatalyst is appropriately designed to promote the partial and selective oxidation of the alcohol. In the electrolyzers described herein, the production of 1 kg of hydrogen from aqueous ethanol occurs with one-third the amount of energy required by a traditional H(2)/O(2) electrolyzer, by virtue of the much lower oxidation potential of ethanol to acetate vs. water to oxygen in alkaline media (E(0)=0.10 V vs. 1.23 V). The self-sustainability of H(2) production is ensured by the simultaneous production of 25 kg of potassium acetate for every kg of H(2), if the promoting co-electrolyte is KOH.


Assuntos
Álcoois/química , Eletrólise/métodos , Hidrogênio/química , Catálise , Conservação dos Recursos Naturais , Eletrólise/instrumentação , Fontes Geradoras de Energia , Oxirredução
7.
ChemSusChem ; 2(1): 99-112, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19115302

RESUMO

Ni-Zn and Ni-Zn-P alloys supported on Vulcan XC-72 are effective materials for the spontaneous deposition of palladium through redox transmetalation with Pd(IV) salts. The materials obtained, Pd-(Ni-Zn)/C and Pd-(Ni-Zn-P)/C, have been characterized by a variety of techniques. The analytical and spectroscopic data show that the surface of Pd-(Ni-Zn)/C and Pd-(Ni-Zn-P)/C contain very small, highly dispersed, and highly crystalline palladium clusters as well as single palladium sites, likely stabilized by interaction with oxygen atoms from Ni--O moieties. As a reference material, a nanostructured Pd/C material was prepared by reduction of an aqueous solution of PdCl(2)/HCl with ethylene glycol in the presence of Vulcan XC-72. In Pd/C, the Pd particles are larger, less dispersed, and much less crystalline. Glassy carbon electrodes coated with the Pd-(Ni-Zn)/C and Pd-(Ni-Zn-P)/C materials, containing very low Pd loadings (22-25 microg cm(-2)), were studied for the oxidation of ethanol in alkaline media in half cells and provided excellent results in terms of both specific current (as high as 3600 A g(Pd)(-1) at room temperature) and onset potential (as low as -0.6 V vs Ag/AgCl/KCl(sat)).


Assuntos
Ligas/química , Etanol/química , Níquel/química , Paládio/química , Zinco/química , Absorção , Fontes de Energia Bioelétrica , Catálise , Eletroquímica , Eletrodos , Hidróxidos/química , Oxirredução , Compostos de Potássio/química , Análise Espectral , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...