Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936980

RESUMO

Estrogen receptors are essential pharmacological targets for treating hormonal disorders and estrogen-dependent malignancies. Selective activation of estrogen receptor (ER) ß is hypothesized to provide therapeutic benefit with reduced risk of unwanted estrogenic side-effects associated with ERα activity. However, activating ERß without activating α is challenging due to the high sequence and structural homology between the receptor subtypes. We assessed the impact of structural modifications to the parent compound OSU-ERß-12 on receptor subtype binding selectivity using cell-free binding assays. Functional selectivity was evaluated by transactivation in HEK-293 cells overexpressing human or murine estrogen receptors. In vivo selectivity was examined through the uterotrophic effects of the analogs after oral administration in estrogen-naïve female mice. Furthermore, we evaluated the in vivo pharmacokinetics of the analogs following single dose IV and oral administration. Regarding selectivity, a single compound exhibited greater functional selectivity than OSU-ERß-12 for human ERß. However, like others in the meta-carborane series, its poor in vivo pharmacokinetics limit its suitability for further development. Surprisingly, and at odds with their pharmacokinetic and in vitro human activity data, most analogs potently induced uterotrophic effects in estrogen-naïve female mice. Further investigation of activity in HEK293 cells expressing murine estrogen receptors revealed species-specific differences in the ER-subtype selectivity of these analogs. Our findings highlight species-specific receptor pharmacology and the challenges it poses to characterizing developmental therapeutics in preclinical species. Significance Statement This study investigates para- and meta-substituted carborane analogs targeting estrogen receptors, revealing the greater selectivity of carborane analogs for human ERß compared to the mouse homolog. These findings shed light on the intricacies of using preclinical species in drug development to predict human pharmacology. The report also provides insights for the refinement and optimization of carborane analogs as potential therapeutic agents for estrogen-related disease states.

2.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293218

RESUMO

Objective: Seventy percent of newly diagnosed breast cancers are estrogen receptor-α positive and HER2/neu negative [1]. First-line treatments incorporate endocrine therapy and cyclin-dependent kinase 4/6 inhibitors [2]. However, therapy resistance occurs in most patients [3-5]. Hence, there is an urgent need for effective second-line treatments. We previously showed that the potent estrogen receptor-ß agonists, OSU-ERb-12 and LY500307, synergized with the selective estrogen receptor modulator, tamoxifen, in vitro. Furthermore, we showed that these compounds inhibited endocrine-resistant and cyclin-dependent kinase 4/6-inhibitor-resistant estrogen receptor α-positive cell lines in vitro [6]. Here, we used fulvestrant- and abemaciclib-resistant T47D-derived cell line xenografts to determine the efficacy of the combination of OSU-ERb-12 and LY500307 with tamoxifen in vivo. Results: Despite efficacy in vitro, treatments failed to reduce xenograft tumor volumes. Hence, we conclude that this treatment strategy lacks direct cancer cell-intrinsic cytotoxic efficacy in vivo.

3.
Life Sci ; 298: 120469, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35283176

RESUMO

AIMS: Metabolic function/dysfunction is central to aging biology. This is well illustrated by the Polymerase Gamma (POLG) mutant mouse where a key residue of the mitochondrial DNA polymerase is mutated (D257A), causing loss of mitochondrial DNA stability and dramatically accelerated aging processes. Given known cardiac phenotypes in the POLG mutant, we sought to characterize the course of cardiac dysfunction in the POLG mutant to guide future intervention studies. MATERIALS AND METHODS: Cardiac echocardiography and terminal hemodynamic analyses were used to define the course of dysfunction in the right and left cardiac ventricles in the POLG mutant. We also conducted RNA-seq analysis on cardiac right ventricles to identify mechanisms engaged by severe metabolic dysfunction and compared this analysis to several publically available datasets. KEY FINDINGS: Interesting sex differences were noted as female POLG mutants died earlier than male POLG mutants and LV chamber diameters were impacted earlier in females than males. Moreover, male mutants showed LV wall thinning while female mutant LV walls were thicker. Both males and females displayed significant RV hypertrophy. POLG mutants displayed a gene expression pattern associated with inflammation, fibrosis, and heart failure. Finally, comparative omics analyses of publically available data provide additional mechanistic and therapeutic insights. SIGNIFICANCE: Aging-associated cardiac dysfunction is a growing clinical problem. This work uncovers sex-specific cardiac responses to severe metabolic dysfunction that are reminiscent of patterns seen in human heart failure and provides insights to the molecular mechanisms engaged downstream of severe metabolic dysfunction that warrant further investigation.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Animais , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Masculino , Camundongos , Mutação , Remodelação Ventricular/genética
4.
J Mol Cell Cardiol ; 157: 90-97, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915138

RESUMO

Biological aging is attributed to progressive dysfunction in systems governing genetic and metabolic integrity. At the cellular level, aging is evident by accumulated DNA damage and mutation, reactive oxygen species, alternate lipid and protein modifications, alternate gene expression programs, and mitochondrial dysfunction. These effects sum to drive altered tissue morphology and organ dysfunction. Protein-acylation has emerged as a critical mediator of age-dependent changes in these processes. Despite decades of research focus from academia and industry, heart failure remains a leading cause of death in the United States while the 5 year mortality rate for heart failure remains over 40%. Over 90% of heart failure deaths occur in patients over the age of 65 and heart failure is the leading cause of hospitalization in Medicare beneficiaries. In 1931, Cole and Koch discovered age-dependent accumulation of phosphates in skeletal muscle. These and similar findings provided supporting evidence for, now well accepted, theories linking metabolism and aging. Nearly two decades later, age-associated alterations in biochemical molecules were described in the heart. From these small beginnings, the field has grown substantially in recent years. This growing research focus on cardiac aging has, in part, been driven by advances on multiple public health fronts that allow population level clinical presentation of aging related disorders. It is estimated that by 2030, 25% of the worldwide population will be over the age of 65. This review provides an overview of acetylation-dependent regulation of biological processes related to cardiac aging and introduces emerging non-acetyl, acyl-lysine modifications in cardiac function and aging.


Assuntos
Envelhecimento/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Biomarcadores , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Metabolismo Energético , Epigênese Genética , Regulação da Expressão Gênica , Coração/fisiopatologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Lisina/metabolismo , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Sarcômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...