Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Stroke Cerebrovasc Dis ; 33(7): 107699, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552890

RESUMO

BACKGROUND: Radiation treatment for diseases of the brain can result in hemorrhagic adverse radiation effects. The underlying pathologic substrate of brain bleeding after irradiation has not been elucidated, nor potential associations with induced somatic mutations. METHODS: We retrospectively reviewed our department's pathology database over 5 years and identified 5 biopsy specimens (4 patients) for hemorrhagic lesions after brain irradiation. Tissues with active malignancy were excluded. Samples were characterized using H&E, Perl's Prussian Blue, and Masson's Trichrome; immunostaining for B-cells (anti-CD20), T-cells (anti-CD3), endothelium (anti-CD31), macrophages (anti-CD163), α-smooth muscle actin, and TUNEL. DNA analysis was done by two panels of next-generation sequencing for somatic mutations associated with known cerebrovascular anomalies. RESULTS: One lesion involved hemorrhagic expansion among multifocal microbleeds that had developed after craniospinal irradiation for distant medulloblastoma treatment. Three bleeds arose in the bed of focally irradiated arteriovenous malformations (AVM) after confirmed obliteration. A fifth specimen involved the radiation field distinct from an irradiated AVM bed. From these, 2 patterns of hemorrhagic vascular pathology were identified: encapsulated hematomas and cavernous-like malformations. All lesions included telangiectasias with dysmorphic endothelium, consistent with primordial cavernous malformations with an associated inflammatory response. DNA analysis demonstrated genetic variants in PIK3CA and/or PTEN genes but excluded mutations in CCM genes. CONCLUSIONS: Despite pathologic heterogeneity, brain bleeding after irradiation is uniformly associated with primordial cavernous-like telangiectasias and disruption of genes implicated in dysangiogenesis but not genes implicated as causative of cerebral cavernous malformations. This may implicate a novel signaling axis as an area for future study.


Assuntos
Mutação , Lesões por Radiação , Humanos , Estudos Retrospectivos , Lesões por Radiação/genética , Lesões por Radiação/patologia , Lesões por Radiação/etiologia , Masculino , Feminino , Análise Mutacional de DNA , Adulto , Irradiação Craniana/efeitos adversos , Predisposição Genética para Doença , Classe I de Fosfatidilinositol 3-Quinases/genética , PTEN Fosfo-Hidrolase/genética , Pessoa de Meia-Idade , Biópsia , Adulto Jovem , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/radioterapia , Malformações Arteriovenosas Intracranianas/patologia , Fatores de Risco , Fenótipo , Hemorragia Cerebral/genética , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Hemorragias Intracranianas/genética , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/patologia , Bases de Dados Factuais
2.
Cell Commun Signal ; 22(1): 23, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195510

RESUMO

Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais , Perfilação da Expressão Gênica , Transcriptoma , Microambiente Tumoral
3.
Nat Commun ; 14(1): 7009, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919320

RESUMO

Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Proteína KRIT1/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Reguladoras de Apoptose/genética , Mutação , Análise de Sequência de DNA
4.
Stroke ; 54(11): 2906-2917, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37746705

RESUMO

BACKGROUND: Cerebral cavernous malformations (CCMs) are vascular malformations that frequently cause stroke. CCMs arise due to loss of function in one of the genes that encode the CCM complex, a negative regulator of MEKK3-KLF2/4 signaling in vascular endothelial cells. Gain-of-function mutations in PIK3CA (encoding the enzymatic subunit of the PI3K (phosphoinositide 3-kinase) pathway associated with cell growth) synergize with CCM gene loss-of-function to generate rapidly growing lesions. METHODS: We recently developed a model of CCM formation that closely reproduces key events in human CCM formation through inducible CCM loss-of-function and PIK3CA gain-of-function in mature mice. In the present study, we use this model to test the ability of rapamycin, a clinically approved inhibitor of the PI3K effector mTORC1, to treat rapidly growing CCMs. RESULTS: We show that both intraperitoneal and oral administration of rapamycin arrests CCM growth, reduces perilesional iron deposition, and improves vascular perfusion within CCMs. CONCLUSIONS: Our findings further establish this adult CCM model as a valuable preclinical model and support clinical testing of rapamycin to treat rapidly growing human CCMs.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Humanos , Adulto , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/tratamento farmacológico , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Sirolimo/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo
5.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37098137

RESUMO

Sturge-Weber Syndrome (SWS) is a sporadic (non-inherited) syndrome characterized by capillary vascular malformations in the facial skin, leptomeninges, or the choroid. A hallmark feature is the mosaic nature of the phenotype. SWS is caused by a somatic mosaic mutation in the GNAQ gene (p.R183Q), leading to activation of the G protein, Gαq. Decades ago, Rudolf Happle hypothesized SWS as an example of "paradominant inheritance", that is, a "lethal gene (mutation) surviving by mosaicism". He predicted that the "presence of the mutation in the zygote will lead to death of the embryo at an early stage of development". We have created a mouse model for SWS using gene targeting to conditionally express the GNAQ p.R183Q mutation. We have employed two different Cre-drivers to examine the phenotypic effects of expression of this mutation at different levels and stages of development. As predicted by Happle, global, ubiquitous expression of this mutation in the blastocyst stage results in 100% embryonic death. The majority of these developing embryos show vascular defects consistent with the human vascular phenotype. By contrast, global but mosaic expression of the mutation enables a fraction of the embryos to survive, but those that survive to birth and beyond do not exhibit obvious vascular defects. These data validate Happle's paradominant inheritance hypothesis for SWS and suggest the requirement of a tight temporal and developmental window of mutation expression for the generation of the vascular phenotype. Furthermore, these engineered murine alleles provide the template for the development of a mouse model of SWS that acquires the somatic mutation during embryonic development, but permits the embryo to progress to live birth and beyond, so that postnatal phenotypes can also be investigated. These mice could then also be employed in pre-clinical studies of novel therapies.


Assuntos
Síndrome de Sturge-Weber , Malformações Vasculares , Animais , Humanos , Masculino , Camundongos , Capilares/metabolismo , Mutação , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/metabolismo , Síndrome de Sturge-Weber/terapia , Malformações Vasculares/genética
6.
Transl Stroke Res ; 14(4): 513-529, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35715588

RESUMO

Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.


Assuntos
MicroRNA Circulante , Hemangioma Cavernoso do Sistema Nervoso Central , MicroRNAs , Humanos , Camundongos , Animais , Teorema de Bayes , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Proteína KRIT1/genética , MicroRNAs/genética
7.
Circulation ; 147(2): 142-153, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36382596

RESUMO

BACKGROUND: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS: (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS: These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.


Assuntos
Miócitos Cardíacos , Troponina I , Camundongos , Animais , Troponina I/metabolismo , Camundongos Endogâmicos DBA , Miócitos Cardíacos/metabolismo , Ciclo Celular , Proliferação de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
8.
Am J Hum Genet ; 109(10): 1814-1827, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36167069

RESUMO

Ischemic stroke, caused by vessel blockage, results in cerebral infarction, the death of brain tissue. Previously, quantitative trait locus (QTL) mapping of cerebral infarct volume and collateral vessel number identified a single, strong genetic locus regulating both phenotypes. Additional studies identified RAB GTPase-binding effector protein 2 (Rabep2) as the casual gene. However, there is yet no evidence that variation in the human ortholog of this gene plays any role in ischemic stroke outcomes. We established an in vivo evaluation platform in mice by using adeno-associated virus (AAV) gene replacement and verified that both mouse and human RABEP2 rescue the mouse Rabep2 knockout ischemic stroke volume and collateral vessel phenotypes. Importantly, this cross-species complementation enabled us to experimentally investigate the functional effects of coding sequence variation in human RABEP2. We chose four coding variants from the human population that are predicted by multiple in silico algorithms to be damaging to RABEP2 function. In vitro and in vivo analyses verify that all four led to decreased collateral vessel connections and increased infarct volume. Thus, there are naturally occurring loss-of-function alleles. This cross-species approach will expand the number of targets for therapeutics development for ischemic stroke.


Assuntos
AVC Isquêmico , Alelos , Animais , Encéfalo/metabolismo , Mapeamento Cromossômico , Humanos , Camundongos , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
ACS Pharmacol Transl Sci ; 5(5): 266-277, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35592432

RESUMO

Cerebral cavernous malformations (CCMs) are hemorrhagic neurovascular lesions that affect more than 1 million people in the United States. Rapamycin inhibits CCM development and bleeding in murine models. The appropriate dosage to modify disease phenotype remains unknown. Current approved indications by the U.S. Food and Drug Administration and clinicaltrials.gov were queried for rapamycin human dosing for various indications. A systematic literature search was conducted on PubMed to investigate mouse dosimetry of rapamycin. In humans, low daily doses of <2 mg/day or trough level targets <15 ng/mL were typically used for benign indications akin to CCM disease, with relatively low complication rates. Higher oral doses in humans, used for organ rejection, result in higher complication rates. Oral dosing in mice, between 2 and 4 mg/kg/day, achieved blood trough levels in the 5-15 ng/mL range, a concentration likely to be targeted in human studies to treat CCM. Preclinical studies are needed utilizing dosing strategies which achieve blood levels corresponding to likely human dosimetry.

10.
Hum Genet ; 141(11): 1761-1769, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35488064

RESUMO

Cerebral cavernous malformations (CCM) are vascular malformations consisting of collections of enlarged capillaries occurring in the brain or spinal cord. These vascular malformations can occur sporadically or susceptibility to develop these can be inherited as an autosomal dominant trait due to mutation in one of three genes. Over a decade ago, we described a 77.6 Kb germline deletion spanning exons 2-10 in the CCM2 gene found in multiple affected individuals from seemingly unrelated families. Segregation analysis using linked, microsatellite markers indicated that this deletion may have arisen at least twice independently. In the ensuing decades, many more CCM patients have been identified with this deletion. In this present study we examined 27 reportedly unrelated affected individuals with this deletion. To investigate the origin of the deletion at base pair level resolution, we sequenced approximately 10 Kb upstream and downstream from the recombination junction on the deleted allele. All patients showed the identical SNP haplotype across this combined 20 Kb interval. In parallel, genealogical records have traced 11 of these individuals to five separate pedigrees dating as far back as the 1600-1700s. These haplotype and genealogical data suggest that these families and the remaining "unrelated" samples converge on a common ancestor due to a founder mutation occurring centuries ago on the North American continent. We also note that another gene, NACAD, is included in this deletion. Although patient self-reporting does not indicate an apparent phenotypic consequence for heterozygous deletion of NACAD, further investigation is warranted for these patients.


Assuntos
Proteínas de Transporte/genética , Hemangioma Cavernoso do Sistema Nervoso Central , Proteínas Proto-Oncogênicas , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Deficiência Intelectual , Micrognatismo , Mutação , Linhagem , Proteínas Proto-Oncogênicas/genética , Costelas/anormalidades , Deleção de Sequência
14.
Orphanet J Rare Dis ; 16(1): 372, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479577

RESUMO

BACKGROUND: Vascular malformations in the central nervous system are difficult to monitor and treat due to their inaccessible location. Angiogenic and inflammatory proteins are secreted into the bloodstream and may serve as useful biomarkers for identifying patients at risk for complications or with certain disease phenotypes. METHODS: A validated multiplex protein array consisting of 26 angiogenic and inflammatory biomarkers (Angiome) was assessed in plasma isolated from healthy controls and patients with either sporadic brain arteriovenous malformation (BAVM), familial cerebral cavernous malformation (CCM), or hereditary hemorrhagic telangiectasia (HHT). These samples were obtained from archives of ongoing research studies at the University of California San Francisco and through prospective collection at the Toronto HHT Centre at St. Michael's Hospital. RESULTS: We compared circulating biomarker levels from each patient group to healthy controls and analyzed each pairwise combination of patient groups for differences in biomarker levels. Additionally, we analyzed the HHT samples to determine the association between biomarker levels and the following HHT-specific phenotypes, BAVM, pulmonary arteriovenous malformation (PAVM), liver vascular malformation (LVM), and gastrointestinal (GI) bleeding. Compared to controls, levels of SDF1 were significantly elevated in HHT patients (Proportional Increase [PI] = 1.87, p < 0.001, q = 0.011). Levels of sENG were significantly reduced in HHT patients compared to controls (PI = 0.56, p < 0.001, q < 0.001), reflecting the prevalence of HHT1 patients in this cohort. Levels of IL6 (PI = 3.22, p < 0.001, q < 0.001) and sTGFßR3 (PI = 0.70, p = 0.001, q < 0.029) differed significantly in CCM patients compared to controls. Compared to controls, ten of the biomarkers were significantly different in sporadic BAVM patients (q-values < 0.05). Among the pairwise combinations of patient groups, a significant elevation was observed in TGFß1 in CCM patients compared to sporadic BAVM patients (PI = 2.30, p < 0.001, q = 0.034). When examining the association of circulating biomarker levels with HHT-specific phenotypes, four markers were significantly lower in HHT patients with BAVM (q-values < 0.05), and four markers were significantly higher in patients with LVM (q-values < 0.05). CONCLUSIONS: This pilot study suggests that the profile of circulating angiogenic and inflammatory biomarkers may be unique to each type of vascular malformation. Furthermore, this study indicates that circulating biomarkers may be useful for assessing phenotypic traits of vascular malformations.


Assuntos
Malformações Arteriovenosas Intracranianas , Telangiectasia Hemorrágica Hereditária , Malformações Vasculares , Biomarcadores , Humanos , Projetos Piloto , Estudos Prospectivos
15.
Front Neurosci ; 15: 705160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408625

RESUMO

Although studies with inbred strains of mice have shown that infarct size is largely determined by the extent of collateral vessel connections between arteries in the brain that enable reperfusion of the ischemic territory, we have identified strain pairs that do not vary in this vascular phenotype, but which nonetheless exhibit large differences in infarct size. In this study we performed quantitative trait locus (QTL) mapping in mice from an intercross between two such strains, WSB/EiJ (WSB) and C57BL/6J (B6). This QTL mapping revealed only one neuroprotective locus on Chromosome 8 (Chr 8) that co-localizes with a neuroprotective locus we mapped previously from F2 progeny between C3H/HeJ (C3H) and B6. The allele-specific phenotypic effect on infarct volume at the genetic region identified by these two independent mappings was in the opposite direction of the parental strain phenotype; namely, the B6 allele conferred increased susceptibility to ischemic infarction. Through two reciprocal congenic mouse lines with either the C3H or B6 background at the Chr 8 locus, we verified the neuroprotective effects of this genetic region that modulates infarct volume without any effect on the collateral vasculature. Additionally, we surveyed non-synonymous coding SNPs and performed RNA-sequencing analysis to identify potential candidate genes within the genetic interval. Through these approaches, we suggest new genes for future mechanistic studies of infarction following ischemic stroke, which may represent novel gene/protein targets for therapeutic development.

16.
Circ Res ; 129(1): 195-215, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34166073

RESUMO

Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.


Assuntos
Veias Cerebrais/anormalidades , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/terapia , Mutação , Animais , Veias Cerebrais/metabolismo , Predisposição Genética para Doença , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Humanos , Fenótipo , Transdução de Sinais
17.
Nature ; 594(7862): 271-276, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910229

RESUMO

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mutação , Neoplasias/genética , Animais , Animais Recém-Nascidos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Mutação com Ganho de Função , Hemangioma Cavernoso do Sistema Nervoso Central/irrigação sanguínea , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação com Perda de Função , MAP Quinase Quinase Quinase 3/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
18.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301422

RESUMO

Propranolol, a pleiotropic ß-adrenergic blocker, has been anecdotally reported to reduce cerebral cavernous malformations (CCMs) in humans. However, propranolol has not been rigorously evaluated in animal models, nor has its mechanism of action in CCM been defined. We report that propranolol or its S(-) enantiomer dramatically reduced embryonic venous cavernomas in ccm2 mosaic zebrafish, whereas R-(+)-propranolol, lacking ß antagonism, had no effect. Silencing of the ß1, but not ß2, adrenergic receptor mimicked the beneficial effects of propranolol in a zebrafish CCM model, as did the ß1-selective antagonist metoprolol. Thus, propranolol ameliorated cavernous malformations by ß1 adrenergic antagonism in zebrafish. Oral propranolol significantly reduced lesion burden in 2 chronic murine models of the exceptionally aggressive Pdcd10/Ccm3 form of CCM. Propranolol or other ß1-selective antagonists may be beneficial in CCM disease.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/efeitos adversos , Hemangioma Cavernoso do Sistema Nervoso Central , Propranolol/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Feminino , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/induzido quimicamente , Hemangioma Cavernoso do Sistema Nervoso Central/tratamento farmacológico , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Angiogenesis ; 23(4): 651-666, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32710309

RESUMO

Cerebral cavernous malformations (CCMs) are ectatic capillary-venous malformations that develop in approximately 0.5% of the population. Patients with CCMs may develop headaches, focal neurologic deficits, seizures, and hemorrhages. While symptomatic CCMs, depending upon the anatomic location, can be surgically removed, there is currently no pharmaceutical therapy to treat CCMs. Several mouse models have been developed to better understand CCM pathogenesis and test therapeutics. The most common mouse models induce a large CCM burden that is anatomically restricted to the cerebellum and contributes to lethality in the early days of life. These inducible models thus have a relatively short period for drug administration. We developed an inducible CCM3 mouse model that develops CCMs after weaning and provides a longer period for potential therapeutic intervention. Using this new model, three recently proposed CCM therapies, fasudil, tempol, vitamin D3, and a combination of the three drugs, failed to substantially reduce CCM formation when treatment was administered for 5 weeks, from postnatal day 21 (P21) to P56. We next restricted Ccm3 deletion to the brain vasculature and provided greater time (121 days) for CCMs to develop chronic hemorrhage, recapitulating the human lesions. We also developed the first model of acute CCM hemorrhage by injecting mice harboring CCMs with lipopolysaccharide. These efficient models will enable future drug studies to more precisely target clinically relevant features of CCM disease: CCM formation, chronic hemorrhage, and acute hemorrhage.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central/patologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Doença Aguda , Animais , Proteínas Reguladoras de Apoptose/deficiência , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Colecalciferol/farmacologia , Doença Crônica , Óxidos N-Cíclicos/farmacologia , Modelos Animais de Doenças , Deleção de Genes , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemorragia/complicações , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fenótipo , Marcadores de Spin
20.
J Exp Med ; 217(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32648916

RESUMO

Cerebral cavernous malformations (CCMs) form following loss of the CCM protein complex in brain endothelial cells due to increased endothelial MEKK3 signaling and KLF2/4 transcription factor expression, but the downstream events that drive lesion formation remain undefined. Recent studies have revealed that CCM lesions expand by incorporating neighboring wild-type endothelial cells, indicative of a cell nonautonomous mechanism. Here we find that endothelial loss of ADAMTS5 reduced CCM formation in the neonatal mouse model. Conversely, endothelial gain of ADAMTS5 conferred early lesion genesis in the absence of increased KLF2/4 expression and synergized with KRIT1 loss of function to create large malformations. Lowering versican expression reduced CCM burden, indicating that versican is the relevant ADAMTS5 substrate and that lesion formation requires proteolysis but not loss of this extracellular matrix protein. These findings identify endothelial secretion of ADAMTS5 and cleavage of versican as downstream mechanisms of CCM pathogenesis and provide a basis for the participation of wild-type endothelial cells in lesion formation.


Assuntos
Proteína ADAMTS5/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/etiologia , Versicanas/metabolismo , Proteína ADAMTS1/metabolismo , Proteína ADAMTS4/metabolismo , Animais , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Feminino , Estudos de Associação Genética , Hemangioma Cavernoso do Sistema Nervoso Central/embriologia , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteólise , Substância Branca/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...