Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Hum Genet ; 99(1): 236-45, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27392078

RESUMO

Crisponi syndrome (CS)/cold-induced sweating syndrome type 1 (CISS1) is a very rare autosomal-recessive disorder characterized by a complex phenotype with high neonatal lethality, associated with the following main clinical features: hyperthermia and feeding difficulties in the neonatal period, scoliosis, and paradoxical sweating induced by cold since early childhood. CS/CISS1 can be caused by mutations in cytokine receptor-like factor 1 (CRLF1). However, the physiopathological role of CRLF1 is still poorly understood. A subset of CS/CISS1 cases remain yet genetically unexplained after CRLF1 sequencing. In five of them, exome sequencing and targeted Sanger sequencing identified four homozygous disease-causing mutations in kelch-like family member 7 (KLHL7), affecting the Kelch domains of the protein. KLHL7 encodes a BTB-Kelch-related protein involved in the ubiquitination of target proteins for proteasome-mediated degradation. Mono-allelic substitutions in other domains of KLHL7 have been reported in three families affected by a late-onset form of autosomal-dominant retinitis pigmentosa. Retinitis pigmentosa was also present in two surviving children reported here carrying bi-allelic KLHL7 mutations. KLHL7 mutations are thus associated with a more severe phenotype in recessive than in dominant cases. Although these data further support the pathogenic role of KLHL7 mutations in a CS/CISS1-like phenotype, they do not explain all their clinical manifestations and highlight the high phenotypic heterogeneity associated with mutations in KLHL7.


Assuntos
Alelos , Autoantígenos/genética , Deformidades Congênitas da Mão/complicações , Deformidades Congênitas da Mão/genética , Hiperidrose/complicações , Hiperidrose/genética , Mutação , Retinose Pigmentar/complicações , Retinose Pigmentar/genética , Trismo/congênito , Sequência de Aminoácidos , Autoantígenos/química , Criança , Pré-Escolar , Morte Súbita , Fácies , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Síndrome , Trismo/complicações , Trismo/genética
3.
Dev Biol ; 416(1): 200-211, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27212026

RESUMO

FOXL2 belongs to the evolutionarily conserved forkhead box (FOX) superfamily and is a master transcription factor in a spectrum of developmental pathways, including ovarian and eyelid development and bone, cartilage and uterine maturation. To analyse its action, we searched for proteins that interact with FOXL2. We found that FOXL2 interacts with specific C-terminal propeptides of several fibrillary collagens. Because these propeptides can participate in feedback regulation of collagen biosynthesis, we inferred that FOXL2 could thereby affect the transcription of the cognate collagen genes. Focusing on COL1A2, we found that FOXL2 indeed affects collagen synthesis, by binding to a DNA response element located about 65Kb upstream of this gene. According to our hypothesis we found that in Foxl2(-/-) mouse ovaries, Col1a2 was elevated from birth to adulthood. The extracellular matrix (ECM) compartmentalizes the ovary during folliculogenesis, (with type I, type III and type IV collagens as primary components), and ECM composition changes during the reproductive lifespan. In Foxl2(-/-) mouse ovaries, in addition to up-regulation of Col1a2, Col3a1, Col4a1 and fibronectin were also upregulated, while laminin expression was reduced. Thus, by regulating levels of extracellular matrix components, FOXL2 may contribute to both ovarian histogenesis and the fibrosis attendant on depletion of the follicle reserve during reproductive aging and menopause.


Assuntos
Colágeno Tipo I/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Colágeno Tipo I/metabolismo , Sequência Consenso , Matriz Extracelular/metabolismo , Feminino , Proteína Forkhead Box L2 , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
4.
BMC Dev Biol ; 15: 27, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134413

RESUMO

BACKGROUND: Haploinsufficiency of the FOXL2 transcription factor in humans causes Blepharophimosis/Ptosis/Epicanthus Inversus syndrome (BPES), characterized by eyelid anomalies and premature ovarian failure. Mice lacking Foxl2 recapitulate human eyelid/forehead defects and undergo female gonadal dysgenesis. We report here that mice lacking Foxl2 also show defects in postnatal growth and embryonic bone and cartilage formation. METHODS: Foxl2 (-/-) male mice at different stages of development have been characterized and compared to wild type. Body length and weight were measured and growth curves were created. Skeletons were stained with alcian blue and/or alizarin red. Bone and cartilage formation was analyzed by Von Kossa staining and immunofluorescence using anti-FOXL2 and anti-SOX9 antibodies followed by confocal microscopy. Genes differentially expressed in skull vaults were evaluated by microarray analysis. Analysis of the GH/IGF1 pathway was done evaluating the expression of several hypothalamic-pituitary-bone axis markers by RT-qPCR. RESULTS: Compared to wild-type, Foxl2 null mice are smaller and show skeletal abnormalities and defects in cartilage and bone mineralization, with down-regulation of the GH/IGF1 axis. Consistent with these effects, we find FOXL2 expressed in embryos at 9.5 dpc in neural tube epithelium, in head mesenchyme near the neural tube, and within the first branchial arch; then, starting at 12.5 dpc, expressed in cartilaginous tissue; and at PO and P7, in hypothalamus. CONCLUSIONS: Our results support FOXL2 as a master transcription factor in a spectrum of developmental processes, including growth, cartilage and bone formation. Its action overlaps that of SOX9, though they are antagonistic in female vs male gonadal sex determination but conjoint in cartilage and skeletal development.


Assuntos
Desenvolvimento Ósseo , Cartilagem/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/metabolismo , Transdução de Sinais , Animais , Blefarofimose/metabolismo , Cartilagem/metabolismo , Feminino , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/genética , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Anormalidades da Pele/metabolismo , Anormalidades Urogenitais/metabolismo
5.
PLoS One ; 5(3): e9477, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20209145

RESUMO

The FOXL2 forkhead transcription factor is expressed in ovarian granulosa cells, and mutated FOXL2 causes the blepharophimosis, ptosis and epicanthus inversus syndrome (BPES) and predisposes to premature ovarian failure. Inactivation of Foxl2 in mice demonstrated its indispensability for female gonadal sex determination and ovary development and revealed its antagonism of Sox9, the effector of male testis development. To help to define the regulatory activities of FOXL2, we looked for interacting proteins. Based on yeast two-hybrid screening, we found that FOXL2 interacts with PIAS1 and UBC9, both parts of the sumoylation machinery. We showed that human FOXL2 is sumoylated in transfected cell lines, and that endogenous mouse Foxl2 is comparably sumoylated. This modification changes its cellular localization, stability and transcriptional activity. It is intriguing that similar sumoylation and regulatory consequences have also been reported for SOX9, the male counterpart of FOXL2 in somatic gonadal tissues.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteína Forkhead Box L2 , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteína SUMO-1 , Enzimas de Conjugação de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...