Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Physiol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970772
3.
J Vis Exp ; (207)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856231

RESUMO

Peripheral mononuclear cells (PBMCs) exhibit robust changes in mitochondrial respiratory capacity in response to health and disease. While these changes do not always reflect what occurs in other tissues, such as skeletal muscle, these cells are an accessible and valuable source of viable mitochondria from human subjects. PBMCs are exposed to systemic signals that impact their bioenergetic state. Thus, expanding our tools to interrogate mitochondrial metabolism in this population will elucidate mechanisms related to disease progression. Functional assays of mitochondria are often limited to using respiratory outputs following maximal substrate, inhibitor, and uncoupler concentrations to determine the full range of respiratory capacity, which may not be achievable in vivo. The conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by ATP-synthase results in a decrease in mitochondrial membrane potential (mMP) and an increase in oxygen consumption. To provide a more integrated analysis of mitochondrial dynamics, this article describes the use of high-resolution fluorespirometry to measure the simultaneous response of oxygen consumption and mitochondrial membrane potential (mMP) to physiologically relevant concentrations of ADP. This technique uses tetramethylrhodamine methylester (TMRM) to measure mMP polarization in response to ADP titrations following maximal hyperpolarization with complex I and II substrates. This technique can be used to quantify how changes in health status, such as aging and metabolic disease, affect the sensitivity of mitochondrial response to energy demand in PBMCs, T-cells, and monocytes from human subjects.


Assuntos
Leucócitos Mononucleares , Potencial da Membrana Mitocondrial , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/citologia , Rodaminas/química , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Consumo de Oxigênio/fisiologia , Mitocôndrias/metabolismo , Corantes Fluorescentes/química
4.
Redox Biol ; 73: 103189, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788541

RESUMO

Age-related endothelial dysfunction is a pivotal factor in the development of cardiovascular diseases, stemming, at least in part, from mitochondrial dysfunction and a consequential increase in oxidative stress. These alterations are central to the decline in vascular health seen with aging, underscoring the urgent need for interventions capable of restoring endothelial function for preventing cardiovascular diseases. Dietary interventions, notably time-restricted feeding (TRF), have been identified for their anti-aging effects on mitochondria, offering protection against age-associated declines in skeletal muscle and other organs. Motivated by these findings, our study aimed to investigate whether TRF could similarly exert protective effects on endothelial health in the vasculature, enhancing mitochondrial function and reducing oxidative stress. To explore this, 12-month-old C57BL/6 mice were placed on a TRF diet, with food access limited to a 6-h window daily for 12 months. For comparison, we included groups of young mice and age-matched controls with unrestricted feeding. We evaluated the impact of TRF on endothelial function by measuring acetylcholine-induced vasorelaxation of the aorta. Mitochondrial health was assessed using fluororespirometry, and vascular reactive oxygen species (ROS) production was quantified with the redox-sensitive dye dihydroethidium. We also quantified 4-hydroxynonenal (4-HNE) levels, a stable marker of lipid peroxidation, in the aorta using ELISA. Our findings demonstrated that aged mice on a standard diet exhibited significant impairments in aortic endothelial relaxation and mitochondrial function, associated with elevated vascular oxidative stress. Remarkably, the TRF regimen led to substantial improvements in these parameters, indicating enhanced endothelial vasorelaxation, better mitochondrial function, and reduced oxidative stress in the aortas of aged mice. This investigation establishes a vital foundation, paving the way for subsequent clinical research aimed at exploring the cardiovascular protective benefits of intermittent fasting.


Assuntos
Envelhecimento , Aorta , Endotélio Vascular , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Vasodilatação , Animais , Camundongos , Mitocôndrias/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aorta/metabolismo , Aorta/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Envelhecimento/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Aldeídos/metabolismo , Aldeídos/farmacologia
5.
Diabetes ; 73(7): 1048-1057, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38551899

RESUMO

Cardiorespiratory fitness and mitochondrial oxidative capacity are associated with reduced walking speed in older adults, but their impact on walking speed in older adults with diabetes has not been clearly defined. We examined differences in cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity between older adults with and without diabetes, as well as determined their relative contribution to slower walking speed in older adults with diabetes. Participants with diabetes (n = 159) had lower cardiorespiratory fitness and mitochondrial respiration in permeabilized fiber bundles compared with those without diabetes (n = 717), following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. Four-meter and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walking speed between older adults with and without diabetes. Additional adjustments for BMI and comorbidities further explained the group differences in walking speed. Cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity contribute to slower walking speeds in older adults with diabetes.


Assuntos
Aptidão Cardiorrespiratória , Diabetes Mellitus , Mitocôndrias Musculares , Velocidade de Caminhada , Humanos , Idoso , Masculino , Feminino , Velocidade de Caminhada/fisiologia , Aptidão Cardiorrespiratória/fisiologia , Mitocôndrias Musculares/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Pessoa de Meia-Idade
6.
Sci Adv ; 10(10): eadj6411, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446898

RESUMO

Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical well-being. Using data from the Study of Muscle, Mobility, and Aging (n = 879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (i) maximal adenosine triphosphate production (ATPmax) and (ii) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing one or more adverse childhood events. After adjustment, each additional event was associated with -0.08 SD (95% confidence interval = -0.13, -0.02) lower ATPmax. No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism for understanding how early social stress influences health in later life.


Assuntos
Músculo Esquelético , Fenômenos Fisiológicos Musculoesqueléticos , Feminino , Humanos , Idoso , Masculino , Trifosfato de Adenosina , Envelhecimento , Mitocôndrias
7.
Aging Cell ; 23(6): e14094, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38332629

RESUMO

Oxidative stress is considered a contributor to declining muscle function and mobility during aging; however, the underlying molecular mechanisms remain poorly described. We hypothesized that greater levels of cysteine (Cys) oxidation on muscle proteins are associated with decreased measures of mobility. Herein, we applied a novel redox proteomics approach to measure reversible protein Cys oxidation in vastus lateralis muscle biopsies collected from 56 subjects in the Study of Muscle, Mobility and Aging (SOMMA), a community-based cohort study of individuals aged 70 years and older. We tested whether levels of Cys oxidation on key muscle proteins involved in muscle structure and contraction were associated with muscle function (leg power and strength), walking speed, and fitness (VO2 peak on cardiopulmonary exercise testing) using linear regression models adjusted for age, sex, and body weight. Higher oxidation levels of select nebulin Cys sites were associated with lower VO2 peak, while greater oxidation of myomesin-1, myomesin-2, and nebulin Cys sites was associated with slower walking speed. Higher oxidation of Cys sites in key proteins such as myomesin-2, alpha-actinin-2, and skeletal muscle alpha-actin were associated with lower leg power and strength. We also observed an unexpected correlation (R = 0.48) between a higher oxidation level of eight Cys sites in alpha-actinin-3 and stronger leg power. Despite this observation, the results generally support the hypothesis that Cys oxidation of muscle proteins impairs muscle power and strength, walking speed, and cardiopulmonary fitness with aging.


Assuntos
Envelhecimento , Cisteína , Oxirredução , Humanos , Idoso , Cisteína/metabolismo , Masculino , Feminino , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Desempenho Físico Funcional , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Proteínas Contráteis/metabolismo , Proteínas Musculares/metabolismo , Idoso de 80 Anos ou mais
8.
Artigo em Inglês | MEDLINE | ID: mdl-38366047

RESUMO

BACKGROUND: Muscle mass loss may be associated with liver fat accumulation, yet scientific consensus is lacking and evidence in older adults is scant. It is unclear which muscle characteristics might contribute to this association in older adults. METHODS: We associated comprehensive muscle-related phenotypes including muscle mass normalized to body weight (D3-creatine dilution), muscle fat infiltration (magnetic resonance imaging), carbohydrate-supported muscle mitochondrial maximal oxidative phosphorylation (respirometry), and cardiorespiratory fitness (VO2 peak) with liver fat among older adults. Linear regression models adjusted for age, gender, technician (respirometry only), daily minutes of moderate-to-vigorous physical activity, and prediabetes/diabetes status tested main effects and interactions of each independent variable with waist circumference (high: women-≥88 cm, men-≥102 cm) and gender. RESULTS: Among older adults aged 75 (interquartile range: 73, 79 years; 59.8% women), muscle mass and liver fat were not associated overall (N = 362) but were positively associated among participants with a high waist circumference (ß: 25.2; 95% confidence intervals [95% CI]: 11.7, 40.4; p = .0002; N = 160). Muscle fat infiltration and liver fat were positively associated (ß: 15.2; 95% CI: 6.8, 24.3; p = .0003; N = 378). Carbohydrate-supported maximum oxidative phosphorylation (before adjustment) and VO2 peak (after adjustment; ß: -12.9; 95% CI: -20.3, -4.8; p = .003; N = 361) were inversely associated with liver fat; adjustment attenuated the estimate for maximum oxidative phosphorylation although the point estimate remained negative (ß: -4.0; 95% CI: -11.6, 4.2; p = .32; N = 321). CONCLUSIONS: Skeletal muscle-related characteristics are metabolically relevant factors linked to liver fat in older adults. Future research should confirm our results to determine whether trials targeting mechanisms common to liver and muscle fat accumulation are warranted.


Assuntos
Aptidão Cardiorrespiratória , Masculino , Humanos , Feminino , Idoso , Músculo Esquelético/fisiologia , Peso Corporal , Fígado , Carboidratos
9.
J Am Geriatr Soc ; 72(4): 1035-1047, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243364

RESUMO

BACKGROUND: Walking slows with aging often leading to mobility disability. Mitochondrial energetics has been found to be associated with gait speed over short distances. Additionally, walking is a complex activity but few clinical factors that may be associated with walk time have been studied. METHODS: We examined 879 participants ≥70 years and measured the time to walk 400 m. We tested the hypothesis that decreased mitochondrial energetics by respirometry in muscle biopsies and magnetic resonance spectroscopy in the thigh and is associated with longer time to walk 400 m. We also used cardiopulmonary exercise testing to assess the energetic costs of walking: maximum oxygen consumption (VO2peak) and energy cost-capacity (the ratio of VO2, at a slow speed to VO2peak). In addition, we tested the hypothesis that selected clinical factors would also be associated with 400-m walk time. RESULTS: Lower Max OXPHOS was associated with longer walk time, and the association was explained by the energetic costs of walking, leg power, and weight. Additionally, a multivariate model revealed that longer walk time was also significantly associated with lower VO2peak, greater cost-capacity ratio, weaker leg power, heavier weight, hip and knee stiffness, peripheral neuropathy, greater perceived exertion while walking slowly, greater physical fatigability, less moderate-to-vigorous exercise, less sedentary time, and anemia. Significant associations between age, sex, muscle mass, and peripheral artery disease with 400-m walk time were explained by other clinical and physiologic factors. CONCLUSIONS: Lower mitochondrial energetics is associated with needing more time to walk 400 m. This supports the value of developing interventions to improve mitochondrial energetics. Additionally, doing more moderate-to-vigorous exercise, increasing leg power, reducing weight, treating hip and knee stiffness, and screening for and treating anemia may reduce the time required to walk 400 m and reduce the risk of mobility disability.


Assuntos
Anemia , Caminhada , Humanos , Envelhecimento/fisiologia , Exercício Físico , Músculo Esquelético , Caminhada/fisiologia , Idoso
10.
Artigo em Inglês | MEDLINE | ID: mdl-37788882

RESUMO

Changes in mitochondrial function play a critical role in the basic biology of aging and age-related disease. Mitochondria are typically thought of in the context of ATP production and oxidant production. However, it is clear that the mitochondria sit at a nexus of cell signaling where they affect metabolite, redox, and energy status, which influence many factors that contribute to the biology of aging, including stress responses, proteostasis, epigenetics, and inflammation. This has led to growing interest in identifying mitochondrial targeted interventions to delay or reverse age-related decline in function and promote healthy aging. In this review, we discuss the diverse roles of mitochondria in the cell. We then highlight some of the most promising strategies and compounds to target aging mitochondria in preclinical testing. Finally, we review the strategies and compounds that have advanced to clinical trials to test their ability to improve health in older adults.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Idoso , Epigenômica , Junções Comunicantes , Mitocôndrias
11.
Geroscience ; 46(2): 2409-2424, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37987886

RESUMO

BACKGROUND: Phenotypic frailty syndrome identifies older adults at greater risk for adverse health outcomes. Despite the critical role of mitochondria in maintaining cellular function, including energy production, the associations between muscle mitochondrial energetics and frailty have not been widely explored in a large, well-phenotyped, older population. METHODS: The Study of Muscle, Mobility and Aging (SOMMA) assessed muscle energetics in older adults (N = 879, mean age = 76.3 years, 59.2% women). 31Phosporous magnetic resonance spectroscopy measured maximal production of adenosine triphosphate (ATPmax) in vivo, while ex vivo high-resolution respirometry of permeabilized muscle fibers from the vastus lateralis measured maximal oxygen consumption supported by fatty acids and complex I- and II-linked carbohydrates (e.g., Max OXPHOSCI+CII). Five frailty criteria, shrinking, weakness, exhaustion, slowness, and low activity, were used to classify participants as robust (0, N = 397), intermediate (1-2, N = 410), or frail (≥ 3, N = 66). We estimated the proportional odds ratio (POR) for greater frailty, adjusted for multiple potential confounders. RESULTS: One-SD decrements of most respirometry measures (e.g., Max OXPHOSCI+CII, adjusted POR = 1.5, 95%CI [1.2,1.8], p = 0.0001) were significantly associated with greater frailty classification. The associations of ATPmax with frailty were weaker than those between Max OXPHOSCI+CII and frailty. Muscle energetics was most strongly associated with slowness and low physical activity components. CONCLUSIONS: Our data suggest that deficits in muscle mitochondrial energetics may be a biological driver of frailty in older adults. On the other hand, we did observe differential relationships between measures of muscle mitochondrial energetics and the individual components of frailty.


Assuntos
Fragilidade , Masculino , Idoso , Humanos , Feminino , Idoso Fragilizado , Músculos , Envelhecimento , Mitocôndrias , Trifosfato de Adenosina
12.
Artigo em Inglês | MEDLINE | ID: mdl-38150179

RESUMO

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery (SPPB) score ≤8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (eg, Maximal Complex I&II OXPHOS: Women = 55.06 ± 15.95; Men = 65.80 ± 19.74; p < .001) and in individuals with mobility impairment compared to those without (eg, Maximal Complex I&II OXPHOS in women: SPPB ≥ 9 = 56.59 ± 16.22; SPPB ≤ 8 = 47.37 ± 11.85; p < .001). Muscle energetics were negatively associated with age only in men (eg, Maximal ETS capacity: R = -0.15, p = .02; age/sex interaction, p = .04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, odds ratio [OR]age-adjusted = 1.78, 95% confidence interval [CI] = 1.03, 3.08, p = .038; 80+ age group, ORage-adjusted = 1.05, 95% CI = 0.52, 2.15, p = .89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.


Assuntos
Envelhecimento , Músculo Esquelético , Masculino , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Músculo Quadríceps , Extremidade Inferior
13.
medRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961367

RESUMO

Background: Muscle mass loss may be associated with liver fat accumulation, yet scientific consensus is lacking and evidence in older adults is scant. It is unclear which muscle characteristics might contribute to this association in older adults. Methods: We associated comprehensive muscle-related phenotypes including muscle mass normalized to body weight (D 3 -creatine dilution), muscle fat infiltration (MRI), carbohydrate-supported muscle mitochondrial maximal oxidative phosphorylation (respirometry), and cardiorespiratory fitness (VO 2 peak) with liver fat among older adults. Linear regression models adjusted for age, gender, technician (respirometry only), daily minutes of moderate to vigorous physical activity, and prediabetes/diabetes status tested main effects and interactions of each independent variable with waist circumference (high: women-≥88 cm, men-≥102 cm) and gender. Results: Among older adults aged 75 (IQR 73, 79 years; 59.8% women), muscle mass and liver fat were not associated overall but were positively associated among participants with a high waist circumference (ß: 25.2; 95%CI 11.7, 40.4; p =.0002; N=362). Muscle fat infiltration and liver fat were positively associated (ß: 15.2; 95%CI 6.8, 24.3; p =.0003; N=378). Carbohydrate-supported maximum oxidative phosphorylation and VO 2 peak (adjusted ß: -12.9; 95%CI -20.3, -4.8; p =0.003; N=361) were inversely associated with liver fat; adjustment attenuated the estimate for maximum oxidative phosphorylation although the point estimate remained negative (ß: -4.0; 95%CI -11.6, 4.2; p =0.32; N=321). Conclusions: Skeletal muscle-related characteristics are metabolically relevant factors linked to liver fat in older adults. Future research should confirm our results to determine whether trials targeting mechanisms common to liver and muscle fat accumulation are warranted.

14.
medRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986748

RESUMO

Oxidative stress is considered a contributor to declining muscle function and mobility during aging; however, the underlying molecular mechanisms remain poorly described. We hypothesized that greater levels of cysteine (Cys) oxidation on muscle proteins are associated with decreased measures of mobility. Herein, we applied a novel redox proteomics approach to measure reversible protein Cys oxidation in vastus lateralis muscle biopsies collected from 56 subjects in the Study of Muscle, Mobility and Aging (SOMMA), a community-based cohort study of individuals aged 70 years and older. We tested whether levels of Cys oxidation on key muscle proteins involved in muscle structure and contraction were associated with muscle function (leg power and strength), walking speed, and fitness (VO2 peak on cardiopulmonary exercise testing) using linear regression models adjusted for age, sex, and body weight. Higher oxidation levels of select nebulin Cys sites were associated with lower VO2 peak, while greater oxidation of myomesin-1, myomesin-2, and nebulin Cys sites was associated with slower walking speed. Higher oxidation of Cys sites in key proteins such as myomesin-2, alpha-actinin-2, and skeletal muscle alpha-actin were associated with lower leg power and strength. We also observed an unexpected correlation (r = 0.48) between a higher oxidation level of 8 Cys sites in alpha-actinin-3 and stronger leg power. Despite this observation, the results generally support the hypothesis that Cys oxidation of muscle proteins impair muscle power and strength, walking speed, and cardiopulmonary fitness with aging.

15.
medRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986814

RESUMO

Rationale: Cardiorespiratory fitness and mitochondrial energetics are associated with reduced walking speed in older adults. The impact of cardiorespiratory fitness and mitochondrial energetics on walking speed in older adults with diabetes has not been clearly defined. Objective: To examine differences in cardiorespiratory fitness and skeletal muscle mitochondrial energetics between older adults with and without diabetes. We also assessed the contribution of cardiorespiratory fitness and skeletal muscle mitochondrial energetics to slower walking speed in older adults with diabetes. Findings: Participants with diabetes had lower cardiorespiratory fitness and mitochondrial energetics when compared to those without diabetes, following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. 4-m and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walk speed between older adults with and without diabetes. Further adjustments of BMI and co-morbidities further explained the group differences in walk speed. Conclusions: Skeletal muscle mitochondrial energetics and cardiorespiratory fitness contribute to slower walking speeds in older adults with diabetes. Cardiorespiratory fitness and mitochondrial energetics may be therapeutic targets to maintain or improve mobility in older adults with diabetes. ARTICLE HIGHLIGHTS: Why did we undertake this study? To determine if mitochondrial energetics and cardiorespiratory fitness contribute to slower walking speed in older adults with diabetes. What is the specific question(s) we wanted to answer? Are mitochondrial energetics and cardiorespiratory fitness in older adults with diabetes lower than those without diabetes? How does mitochondrial energetics and cardiorespiratory fitness impact walking speed in older adults with diabetes? What did we find? Mitochondrial energetics and cardiorespiratory fitness were lower in older adults with diabetes compared to those without diabetes, and energetics, and cardiorespiratory fitness, contributed to slower walking speed in those with diabetes. What are the implications of our findings? Cardiorespiratory fitness and mitochondrial energetics may be key therapeutic targets to maintain or improve mobility in older adults with diabetes.

16.
medRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986884

RESUMO

Background: Walking slows with aging often leading to mobility disability. Mitochondrial energetics has been found to influence gait speed over short distances. Additionally, walking is a complex activity but few clinical factors that may influence walk time have been studied. Methods: We examined 879 participants ≥70 years and measured the time to walk 400m. We tested the hypothesis that decreased mitochondrial energetics by respirometry in muscle biopsies and magnetic resonance spectroscopy in the thigh, is associated with longer time to walk 400m. We also used cardiopulmonary exercise testing to assess the energetic costs of walking: maximum oxygen consumption (VO 2 peak) and energy cost-capacity (the ratio of VO2, at a slow speed to VO 2 peak). In addition, we tested the hypothesis that selected clinical factors would also be associated with 400m walk time. Results: Lower Max OXPHOS was associated with longer walk time and the association was explained by the energetics costs of walking, leg power and weight. Additionally, a multivariate model revealed that longer walk time was also significantly associated with lower VO 2 peak, greater cost-capacity ratio, weaker leg power, heavier weight, hip and knee stiffness, peripheral neuropathy, greater perceived exertion while walking slowly, greater physical fatigability, less moderate-to-vigorous exercise, less sedentary time and anemia. Significant associations between age, sex, muscle mass, and peripheral artery disease with 400m walk time were explained by other clinical and physiologic factors. Conclusions: Lower mitochondrial energetics is associated with needing more time to walk 400m. This supports the value of developing interventions to improve mitochondrial energetics. Additionally, doing more moderate-to-vigorous exercise, increasing leg power, reducing weight, treating hip and knee stiffness, and screening for and treating anemia may reduce the time required to walk 400m and reduce the risk of mobility disability.

17.
medRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986889

RESUMO

Social stress experienced in childhood is associated with adverse health later in life. Mitochondrial function has been implicated as a mechanism for how stressful life events "get under the skin" to influence physical wellbeing. Using data from the Study of Muscle, Mobility and Aging (n=879, 59% women), linear models examined whether adverse childhood events (i.e., physical abuse) were associated with two measures of skeletal muscle mitochondrial energetics in older adults: (1) maximal adenosine triphosphate production (ATP max ) and (2) maximal state 3 respiration (Max OXPHOS). Forty-five percent of the sample reported experiencing 1+ adverse childhood event. After adjustment, each additional event was associated with -0.07 SD (95% CI= - 0.12, -0.01) lower ATP max . No association was observed with Max OXPHOS. Adverse childhood events are associated with lower ATP production in later life. Findings indicate that mitochondrial function may be a mechanism in understanding how early social stress influences health in later life.

18.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37987007

RESUMO

The age-related decline in muscle mitochondrial energetics contributes to the loss of mobility in older adults. Women experience a higher prevalence of mobility impairment compared to men, but it is unknown whether sex-specific differences in muscle energetics underlie this disparity. In the Study of Muscle, Mobility and Aging (SOMMA), muscle energetics were characterized using in vivo phosphorus-31 magnetic resonance spectroscopy and high-resolution respirometry of vastus lateralis biopsies in 773 participants (56.4% women, age 70-94 years). A Short Physical Performance Battery score ≤ 8 was used to define lower-extremity mobility impairment. Muscle mitochondrial energetics were lower in women compared to men (e.g. Maximal Complex I&II OXPHOS: Women=55.06 +/- 15.95; Men=65.80 +/- 19.74; p<0.001) and in individuals with mobility impairment compared to those without (e.g., Maximal Complex I&II OXPHOS in women: SPPB≥9=56.59 +/- 16.22; SPPB≤8=47.37 +/- 11.85; p<0.001). Muscle energetics were negatively associated with age only in men (e.g., Maximal ETS capacity: R=-0.15, p=0.02; age/sex interaction, p=0.04), resulting in muscle energetics measures that were significantly lower in women than men in the 70-79 age group but not the 80+ age group. Similarly, the odds of mobility impairment were greater in women than men only in the 70-79 age group (70-79 age group, OR age-adjusted =1.78, 95% CI=1.03, 3.08, p=0.038; 80+ age group, OR age-adjusted =1.05, 95% CI=0.52, 2.15, p=0.89). Accounting for muscle energetics attenuated up to 75% of the greater odds of mobility impairment in women. Women had lower muscle mitochondrial energetics compared to men, which largely explain their greater odds of lower-extremity mobility impairment.

19.
J Physiol ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742081

RESUMO

Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.

20.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398086

RESUMO

Sarcopenia, the age-related loss of muscle mass and function, contributes to decreased quality of life in the elderly and increased healthcare costs. Decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance are all associated with increased oxidative stress and the decline in mitochondrial function with age. We hypothesized that elevated mitochondrial stress with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we designed two in vivo muscle-stimulation protocols to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise to characterize the effect of age and sex on mitochondrial substrate utilization in skeletal muscle following muscle contraction. Following HII stimulation, mitochondria from young skeletal muscle increased fatty acid oxidation compared to non-stimulated control muscle; however, mitochondria from aged muscle decreased fatty acid oxidation. In contrast, following LISS, mitochondrial from young skeletal muscle decreased fatty acid oxidation, whereas aged mitochondria increased fatty acid oxidation. We also found that HII can inhibit mitochondrial oxidation of glutamate in both stimulated and non-stimulated aged muscle, suggesting HII initiates circulation of an exerkine capable of altering whole-body metabolism. Analyses of the muscle metabolome indicates that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. Treatment with elamipretide, a mitochondrially targeted peptide, restored glutamate oxidation and metabolic pathway changes following HII suggesting rescuing redox status and improving mitochondrial function in aged muscle enhances the metabolic response to muscle contraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...