Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Phys ; 19(3): 351-357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36942094

RESUMO

Entanglement is a fundamental feature of quantum mechanics and holds great promise for enhancing metrology and communications. Much of the focus of quantum metrology so far has been on generating highly entangled quantum states that offer better sensitivity, per resource, than what can be achieved classically. However, to reach the ultimate limits in multi-parameter quantum metrology and quantum information processing tasks, collective measurements, which generate entanglement between multiple copies of the quantum state, are necessary. Here, we experimentally demonstrate theoretically optimal single- and two-copy collective measurements for simultaneously estimating two non-commuting qubit rotations. This allows us to implement quantum-enhanced sensing, for which the metrological gain persists for high levels of decoherence, and to draw fundamental insights about the interpretation of the uncertainty principle. We implement our optimal measurements on superconducting, trapped-ion and photonic systems, providing an indication of how future quantum-enhanced sensing networks may look.

2.
Nature ; 605(7911): 675-680, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614250

RESUMO

Quantum computers can be protected from noise by encoding the logical quantum information redundantly into multiple qubits using error-correcting codes1,2. When manipulating the logical quantum states, it is imperative that errors caused by imperfect operations do not spread uncontrollably through the quantum register. This requires that all operations on the quantum register obey a fault-tolerant circuit design3-5, which, in general, increases the complexity of the implementation. Here we demonstrate a fault-tolerant universal set of gates on two logical qubits in a trapped-ion quantum computer. In particular, we make use of the recently introduced paradigm of flag fault tolerance, where the absence or presence of dangerous errors is heralded by the use of auxiliary flag qubits6-10. We perform a logical two-qubit controlled-NOT gate between two instances of the seven-qubit colour code11,12, and fault-tolerantly prepare a logical magic state8,13. We then realize a fault-tolerant logical T gate by injecting the magic state by teleportation from one logical qubit onto the other14. We observe the hallmark feature of fault tolerance-a superior performance compared with a non-fault-tolerant implementation. In combination with recently demonstrated repeated quantum error-correction cycles15,16, these results provide a route towards error-corrected universal quantum computation.

3.
Nature ; 603(7902): 604-609, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322252

RESUMO

Quantum sensors are an established technology that has created new opportunities for precision sensing across the breadth of science. Using entanglement for quantum enhancement will allow us to construct the next generation of sensors that can approach the fundamental limits of precision allowed by quantum physics. However, determining how state-of-the-art sensing platforms may be used to converge to these ultimate limits is an outstanding challenge. Here we merge concepts from the field of quantum information processing with metrology, and successfully implement experimentally a programmable quantum sensor operating close to the fundamental limits imposed by the laws of quantum mechanics. We achieve this by using low-depth, parametrized quantum circuits implementing optimal input states and measurement operators for a sensing task on a trapped-ion experiment. With 26 ions, we approach the fundamental sensing limit up to a factor of 1.45 ± 0.01, outperforming conventional spin-squeezing with a factor of 1.87 ± 0.03. Our approach reduces the number of averages to reach a given Allan deviation by a factor of 1.59 ± 0.06 compared with traditional methods not using entanglement-enabled protocols. We further perform on-device quantum-classical feedback optimization to 'self-calibrate' the programmable quantum sensor with comparable performance. This ability illustrates that this next generation of quantum sensor can be used without previous knowledge of the device or its noise environment.

4.
Opt Express ; 25(14): 15643-15661, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789079

RESUMO

We present and analyze two pathways to produce commercial optical-fiber patch cords with stable long-term transmission in the ultraviolet (UV) at powers up to ~ 200 mW, and typical bulk transmission between 66-75 %. Commercial fiber patch cords in the UV are of great interest across a wide variety of scientific applications ranging from biology to metrology, and the lack of availability has yet to be suitably addressed. We provide a guide to producing such solarization-resistant, hydrogen-passivated, polarization-maintaining, connectorized and jacketed optical fibers compatible with demanding scientific and industrial applications. Our presentation describes the fabrication and hydrogen loading procedure in detail and presents a high-pressure vessel design, calculations of required H2 loading times, and information on patch cord handling and the mitigation of bending sensitivities. Transmission at 313 nm is measured over many months for cumulative energy on the fiber output of > 10 kJ with no demonstrable degradation due to UV solarization, in contrast to standard uncured fibers. Polarization sensitivity and stability are characterized yielding polarization extinction ratios between 15 dB and 25 dB at 313 nm, where we find patch cords become linearly polarizing. We observe that particle deposition at the fiber facet induced by high-intensity UV exposure can (reversibly) deteriorate patch cord performance and describe a technique for nitrogen purging of fiber collimators which mitigates this phenomenon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...