Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276668

RESUMO

We screened 65 longitudinally-collected nasal swab samples from 31 children aged 0-16 years who were positive for SARS-CoV-2 omicron BA.1. By day 7 after onset of symptoms 48% of children remained positive by rapid antigen test. In a sample subset we found 100% correlation between antigen test results and virus culture.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22271195

RESUMO

SARS-CoV-2, the causative agent of COVID-19, emerged in late 2020. The highly contagious B.1.617.2 (Delta) Variant of Concern (VOC) was first identified in October 2020 in India and subsequently disseminated worldwide, later becoming the dominant lineage in the U.S. Despite considerable genomic analysis of SARS-CoV-2 in the U.S., several gaps in the understanding of the local dynamics during early introductions remain, which when elucidated could translate the results of viral genomic epidemiology to actionable mitigation efforts. Here, we explore the early emergence of the Delta variant in Florida, U.S. using phylogenetic analysis of representative Florida and globally sampled genomes. We find multiple independent introductions into Florida primarily from North America and Europe, with a minority originating from Asia. These introductions lead to three distinct clades that demonstrated varying relative rates of transmission and possessed five distinct substitutions that were 3-21 times more prevalent in the Florida sample as compared to the global sample. Our results underscore the benefits of routine viral genomic surveillance to monitor epidemic spread and support the need for more comprehensive genomic epidemiology studies of emerging variants. In addition, we provide a model of epidemic spread of newly emerging VOCs that can inform future public health responses.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266134

RESUMO

BackgroundSARS-CoV-2 Delta variant has caused a dramatic resurgence in infections in the United Sates, raising questions regarding potential transmissibility among vaccinated individuals. MethodsBetween October 2020 and July 2021, we sequenced 4,439 SARS-CoV-2 full genomes, 23% of all known infections in Alachua County, Florida, including 109 vaccine breakthrough cases. Univariate and multivariate regression analyses were conducted to evaluate associations between viral load (VL) level and patient characteristics. Contact tracing and phylogenetic analysis were used to investigate direct transmissions involving vaccinated individuals. ResultsThe majority of breakthrough sequences with lineage assignment were classified as Delta variants (74.6%) and occurred, on average, about three months (104 {+/-} 57.5 days) after full vaccination, at the same time (June-July 2021) of Delta variant exponential spread within the county. Six Delta variant transmission pairs between fully vaccinated individuals were identified through contact tracing, three of which were confirmed by phylogenetic analysis. Delta breakthroughs exhibited broad VL values during acute infection (IQR 1.2 - 8.64 Log copies/ml), on average 38% lower than matched unvaccinated patients (3.29 - 10.81 Log copies/ml, p<0.00001). Nevertheless, 49-50% of all breakthroughs, and 56-60% of Delta-infected breakthroughs exhibited VL above the transmissibility threshold (4 Log copies/ml) irrespective of time post vaccination. ConclusionsDelta infection transmissibility and general VL patterns in vaccinated individuals suggest limited levels of sterilizing immunity that need to be considered by public health policies. In particular, ongoing evaluation of vaccine boosters should address whether extra vaccine doses might curb breakthrough contribution to epidemic spread.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265066

RESUMO

Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has the potential to transform diagnostics due to its programmability. However, many of the CRISPR-based detection methods are reliant on either a multi-step process involving amplification or elaborate guide RNA designs. A complete one-pot detection reaction using alternative Cas effector endonucleases has been proposed to overcome these challenges. Yet, current approaches using Alicyclobacillus acidiphilus Cas12b (AapCas12b) are limited by its thermal instability at optimum reverse transcription loop-mediated isothermal amplification (RT-LAMP) reaction temperatures. Herein, we demonstrate that a novel Cas12b from Brevibacillus sp. SYP-B805 (referred to as BrCas12b) has robust trans-cleavage activity at ideal RT-LAMP conditions. A competitive profiling study of BrCas12b against Cas12b homologs from other bacteria genera underscores the potential of BrCas12b in the development of new diagnostics. As a proof-of-concept, we incorporated BrCas12b into an RT-LAMP-mediated one-pot reaction system, coined CRISPR-SPADE (CRISPR Single Pot Assay for Detecting Emerging VOCs) to enable rapid, differential detection of SARS-CoV-2 VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) in 205 clinical samples. Notably, a BrCas12b detection signal was observed within 1-3 minutes of amplification, achieving an overall 98.1% specificity, 91.2% accuracy, and 88.1% sensitivity within 30 minutes. Significantly, for samples with high viral load (Ct value [≤] 30), 100% accuracy and sensitivity were attained. To facilitate dissemination and global implementation of the assay, we combined the lyophilized one-pot reagents with a portable multiplexing device capable of interpreting fluorescence signals at a fraction of the cost of a qPCR system. With relaxed design requirements, one-pot detection, and simple instrumentation, this assay has the capability to advance future diagnostics.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257237

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOC) has raised questions regarding the extent of protection of currently implemented vaccines. Ten "vaccination breakthrough" infections were identified in Alachua County, Florida, among individuals fully vaccinated with the BNT162b2 mRNA vaccine as a result of social or household transmission. Eight individuals presented mild symptoms in the absence of infection with other common respiratory viruses, confirmed using viral genetic sequencing. SARS-CoV-2 genomes were successfully generated for five of the vaccine breakthroughs and 399 individuals in the surrounding area and were included for reference-based phylogenetic investigation. These five individuals were characterized by infection with both VOCs and low-frequency variants present within the surrounding population. Mutations, in the Spike glycoprotein, were consistent with their respective circulating lineages. However, we detected an additional mutation in Spikes N-terminal domain of a B.1.1.7 strain, present at low-frequency ([~]1%) in the unvaccinated population, potentially affecting proteins stability and functionality. The findings highlight the critical need for continued testing and monitoring of infection among individuals regardless of vaccination status.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248355

RESUMO

We investigated SARS-CoV-2 transmission dynamics in Italy, one of the countries hit hardest by the pandemic, using phylodynamic analysis of viral genetic and epidemiological data. We observed the co-circulation of at least 13 different SARS-CoV-2 lineages over time, which were linked to multiple importations and characterized by large transmission clusters concomitant with a high number of infections. Subsequent implementation of a three-phase nationwide lockdown strategy greatly reduced infection numbers and hospitalizations. Yet we present evidence of sustained viral spread among sporadic clusters acting as "hidden reservoirs" during summer 2020. Mathematical modelling shows that increased mobility among residents eventually catalyzed the coalescence of such clusters, thus driving up the number of infections and initiating a new epidemic wave. Our results suggest that the efficacy of public health interventions is, ultimately, limited by the size and structure of epidemic reservoirs, which may warrant prioritization during vaccine deployment.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-370999

RESUMO

Although the global response to COVID-19 has not been entirely unified, the opportunity arises to assess the impact of regional public health interventions and to classify strategies according to their outcome. Analysis of genetic sequence data gathered over the course of the pandemic allows us to link the dynamics associated with networks of connected individuals with specific interventions. In this study, clusters of transmission were inferred from a phylogenetic tree representing the relationships of patient sequences sampled from December 30, 2019 to April 17, 2020. Metadata comprising sampling time and location were used to define the global behavior of transmission over this earlier sampling period, but also the involvement of individual regions in transmission cluster dynamics. Results demonstrate a positive impact of international travel restrictions and nationwide lockdowns on global cluster dynamics. However, residual, localized clusters displayed a wide range of estimated initial secondary infection rates, for which uniform public health interventions are unlikely to have sustainable effects. Our findings highlight the presence of so-called "super-spreaders", with the propensity to infect a larger-than-average number of people, in countries, such as the USA, for which additional mitigation efforts targeting events surrounding this type of spread are urgently needed to curb further dissemination of SARS-CoV-2.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-020594

RESUMO

The SARS-CoV-2 pandemic has been growing exponentially, affecting nearly 900 thousand people and causing enormous distress to economies and societies worldwide. A plethora of analyses based on viral sequences has already been published, in scientific journals as well as through non-peer reviewed channels, to investigate SARS-CoV-2 genetic heterogeneity and spatiotemporal dissemination. We examined full genome sequences currently available to assess the presence of sufficient information for reliable phylogenetic and phylogeographic studies in countries with the highest toll of confirmed cases. Although number of-available full-genomes is growing daily, and the full dataset contains sufficient phylogenetic information that would allow reliable inference of phylogenetic relationships, country-specific SARS-CoV-2 datasets still present severe limitations. Studies assessing within country spread or transmission clusters should be considered preliminary at best, or hypothesis generating. Hence the need for continuing concerted efforts to increase number and quality of the sequences required for robust tracing of the epidemic. Significance StatementAlthough genome sequences of SARS-CoV-2 are growing daily and contain sufficient phylogenetic information, country-specific data still present severe limitations and should be interpreted with caution.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20034470

RESUMO

During the past three months, a new coronavirus (SARS-CoV-2) epidemic has been growing exponentially, affecting over 100 thousand people worldwide, and causing enormous distress to economies and societies of affected countries. A plethora of analyses based on viral sequences has already been published, in scientific journals as well as through non-peer reviewed channels, to investigate SARS-CoV-2 genetic heterogeneity and spatiotemporal dissemination. We examined all full genome sequences currently available to assess the presence of sufficient information for reliable phylogenetic and phylogeographic studies. Our analysis clearly shows severe limitations in the present data, in light of which any finding should be considered, at the very best, preliminary and hypothesis-generating. Hence the need for avoiding stigmatization based on partial information, and for continuing concerted efforts to increase number and quality of the sequences required for robust tracing of the epidemic.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-015685

RESUMO

In depth evolutionary and structural analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolated from bats, pangolins, and humans are necessary to assess the role of natural selection and recombination in the emergence of the current pandemic strain. The SARS-CoV-2 S glycoprotein unique features have been associated with efficient viral spread in the human population. Phylogeny-based and genetic algorithm methods clearly show that recombination events between viral progenitors infecting animal hosts led to a mosaic structure in the S gene. We identified recombination coldspots in the S glycoprotein and strong purifying selection. Moreover, although there is little evidence of diversifying positive selection during host-switching, structural analysis suggests that some of the residues emerged along the ancestral lineage of current pandemic strains may contribute to enhanced ability to infect human cells. Interestingly, recombination did not affect the long-range covariant movements of SARS-CoV-2 S glycoprotein monomer in pre-fusion conformation but, on the contrary, could contribute to the observed overall viral efficiency. Our dynamic simulations revealed that the movements between the host cell receptor binding domain (RBD) and the novel furin-like cleavage site are correlated. We identified threonine 333 (under purifying selection), at the beginning of the RBD, as the hinge of the opening/closing mechanism of the SARS-CoV-2 S glycoprotein monomer functional to hACE2 binding. Our findings support a scenario where ancestral recombination and fixation of amino acid residues in the RBD of the S glycoprotein generated a virus with unique features, capable of extremely efficient infection of the human host.

11.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-825833

RESUMO

Objective:To evaluate the evolution of the pathogen Mayaro virus, causing Mayaro fever (a mosquito-borne disease) and to perform selective pressure analysis and homology modelling.Methods:Nine different datasets were built, one for each protein (from protein C to non-structural protein 4) and the last one for the complete genome. Selective pressure and homology modelling analyses were applied.Results:Two main clades (A and B) were pointed in the maximum likelihood tree. The clade A included five Brazilian sequences sampled from 1955 to 2015. The Brazilian sequence sampled in 2014 significantly clustered with the Haitian sequence sampled in 2015. The clade B included the remaining 27 sequences sampled in the Central and Southern America from 1957 to 2013. Selective pressure analysis revealed several sites under episodic diversifying selection in envelope surface glycoprotein E1, non-structural protein 1 and non- structural protein 3 with a posterior probability P≤0.01. Homology modelling showed different sites modified by selective pressure and some protein-protein interaction sites at high interaction propensity.Conclusion:Maximum likelihood analysis confirmed the Mayaro virus previous circulation in Haiti and the successful spread to the Caribbean and USA. Selective pressure analysis revealed a strong presence of negatively selected sites, suggesting a probable purging of deleterious polymorphisms in functional genes. Homology model showed the position 31, under selective pressure, located in the edge of the ADP-ribose binding site predicting to possess a high potential of protein-protein interaction and suggesting the possible chance for a protective vaccine, thus preventing Mayaro virus urbanization as with Chikungunya virus.

12.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-972469

RESUMO

Objective: To evaluate the evolution of the pathogen Mayaro virus, causing Mayaro fever (a mosquito-borne disease) and to perform selective pressure analysis and homology modelling. Methods: Nine different datasets were built, one for each protein (from protein C to non-structural protein 4) and the last one for the complete genome. Selective pressure and homology modelling analyses were applied. Results: Two main clades (A and B) were pointed in the maximum likelihood tree. The clade A included five Brazilian sequences sampled from 1955 to 2015. The Brazilian sequence sampled in 2014 significantly clustered with the Haitian sequence sampled in 2015. The clade B included the remaining 27 sequences sampled in the Central and Southern America from 1957 to 2013. Selective pressure analysis revealed several sites under episodic diversifying selection in envelope surface glycoprotein E1, non-structural protein 1 and non- structural protein 3 with a posterior probability P≤0.01. Homology modelling showed different sites modified by selective pressure and some protein-protein interaction sites at high interaction propensity. Conclusion: Maximum likelihood analysis confirmed the Mayaro virus previous circulation in Haiti and the successful spread to the Caribbean and USA. Selective pressure analysis revealed a strong presence of negatively selected sites, suggesting a probable purging of deleterious polymorphisms in functional genes. Homology model showed the position 31, under selective pressure, located in the edge of the ADP-ribose binding site predicting to possess a high potential of protein-protein interaction and suggesting the possible chance for a protective vaccine, thus preventing Mayaro virus urbanization as with Chikungunya virus.

13.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-820256

RESUMO

OBJECTIVE@#To study the genetic diversity of Murray Valley encephalitis virus (MVEV) in Australia and Papua New Guinea.@*METHODS@#MVEV envelope gene sequences were aligned using Clustal X and manual editing was performed with Bioedit. ModelTest v. 3.7 was used to select the simplest evolutionary model that adequately fitted the sequence data. Maximum likelihood analysis was performed using PhyML. The phylogenetic signal of the dataset was investigated by the likelihood mapping analysis. The Bayesian phylogenetic tree was built using BEAST.@*RESULTS@#The phylogenetic trees showed two main clades. The clade Ⅰ including eight strains isolated from West Australia. The clade Ⅱ was characterized by at least four epidemic entries, three of which localized in Northern West Australia and one in Papua New Guinea. The estimated mean evolutionary rate value of the MVEV envelope gene was 0.407 × 10(-3) substitution/site/year (95% HPD: 0.623 × 10(-4)-0.780 × 10(-3)). Population dynamics defines a relative constant population until the year 2000, when a reduction occurred, probably due to a bottleneck.@*CONCLUSIONS@#This study has been useful in supporting the probable connection between climate changes and viral evolution also by the vector point of view; multidisciplinary monitoring studies are important to prevent new viral epidemics inside and outside new endemic areas.

14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-951428

RESUMO

Objective: To study the genetic diversity of Murray Valley encephalitis virus (MVEV) in Australia and Papua New Guinea. Methods: MVEV envelope gene sequences were aligned using Clustal X and manual editing was performed with Bioedit. ModelTest v. 3.7 was used to select the simplest evolutionary model that adequately fitted the sequence data. Maximum likelihood analysis was performed using PhyML. The phylogenetic signal of the dataset was investigated by the likelihood mapping analysis. The Bayesian phylogenetic tree was built using BEAST. Results: The phylogenetic trees showed two main clades. The clade I including eight strains isolated from West Australia. The clade II was characterized by at least four epidemic entries, three of which localized in Northern West Australia and one in Papua New Guinea. The estimated mean evolutionary rate value of the MVEV envelope gene was 0.407 × 10

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...