Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(8): e0182888, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28806773

RESUMO

The purpose of this study is to investigate the optimal reference geometry for gamma camera calibration. Yet another question of interest was to assess the influence of the number of 3D Ordered Subsets Expectation Maximization (3D-OSEM) updates on activity quantification for SPECT imaging with 177Lu. The accuracy of 177Lu activity quantification was assessed both in small and in large objects. Two different reference geometries, namely a cylindrical homogeneous phantom and a Jaszczak 16 ml sphere surrounded by cold water, were used to determine the gamma camera calibration factor of a commercial SPECT/CT system. Moreover, the noise level and the concentration recovery coefficient were evaluated as a function of the number of 3D-OSEM updates by using the SPECT/CT images of the reference geometry phantoms and those of a cold Jaszczak phantom with three hot spheres (16ml, 8ml and 4ml), respectively. The optimal choice of the number of 3D-OSEM updates was based on a compromise between the noise level achievable in the reconstructed SPECT images and the concentration recovery coefficients. The quantitative accuracy achievable was finally validated on a test phantom, where a spherical insert composed of two concentric spheres was used to simulate a lesion in a warm background. Our data confirm and extend previous observations. Using the calibration factor obtained with the cylindrical homogeneous phantom and the Jaszczak 16 ml sphere, the recovered activity in the test phantom was underestimated by -16.4% and -24.8%, respectively. Our work has led us to conclude that gamma camera calibration performed with large homogeneous phantom outperforms calibration executed with the Jaszczak 16ml sphere. Furthermore, the results obtained support the assumption that approximately 50 OSEM updates represent a good trade-off to reach convergence in small volumes, meanwhile minimizing the noise level.


Assuntos
Lutécio/química , Radioisótopos/química , Radioterapia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Calibragem , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
2.
PLoS One ; 11(11): e0165730, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832096

RESUMO

Prostate cancer (PCa) is the most common non-cutaneous cancer in male subjects and the second leading cause of cancer-related death in developed countries. The necessity of a non-invasive technique for the diagnosis of PCa in early stage has grown through years. Proton magnetic resonance spectroscopy (1H-MRS) and proton magnetic resonance spectroscopy imaging (1H-MRSI) are advanced magnetic resonance techniques that can mark the presence of metabolites such as citrate, choline, creatine and polyamines in a selected voxel, or in an array of voxels (in MRSI) inside prostatic tissue. Abundance or lack of these metabolites can discriminate between pathological and healthy tissue. Although the use of magnetic resonance spectroscopy (MRS) is well established in brain and liver with dedicated software for spectral analysis, quantification of metabolites in prostate can be very difficult to achieve, due to poor signal to noise ratio and strong J-coupling of the citrate. The aim of this work is to develop a software prototype for automatic quantification of citrate, choline and creatine in prostate. Its core is an original fitting routine that makes use of a fixed step gradient descent minimization algorithm (FSGD) and MRS simulations developed with the GAMMA libraries in C++. The accurate simulation of the citrate spin systems allows to predict the correct J-modulation under different NMR sequences and under different coupling parameters. The accuracy of the quantifications was tested on measurements performed on a Philips Ingenia 3T scanner using homemade phantoms. Some acquisitions in healthy volunteers have been also carried out to test the software performance in vivo.


Assuntos
Colina/análise , Ácido Cítrico/análise , Creatina/análise , Espectroscopia de Ressonância Magnética/métodos , Próstata/patologia , Neoplasias da Próstata/patologia , Algoritmos , Humanos , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Imagens de Fantasmas , Próstata/química , Neoplasias da Próstata/química , Espectroscopia de Prótons por Ressonância Magnética , Software
3.
PLoS One ; 11(2): e0147936, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848962

RESUMO

The purpose of this study was to retrospectively evaluate the results from a Helical TomoTherapy Hi-Art treatment system relating to quality controls based on daily static and dynamic output checks using statistical process control methods. Individual value X-charts, exponentially weighted moving average charts, and process capability and acceptability indices were used to monitor the treatment system performance. Daily output values measured from January 2014 to January 2015 were considered. The results obtained showed that, although the process was in control, there was an out-of-control situation in the principal maintenance intervention for the treatment system. In particular, process capability indices showed a decreasing percentage of points in control which was, however, acceptable according to AAPM TG148 guidelines. Our findings underline the importance of restricting the acceptable range of daily output checks and suggest a future line of investigation for a detailed process control of daily output checks for the Helical TomoTherapy Hi-Art treatment system.


Assuntos
Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/normas , Humanos , Neoplasias/radioterapia , Controle de Qualidade , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...