Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Netw ; 171: 127-143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091756

RESUMO

Recent years have witnessed increasing interest in adversarial attacks on images, while adversarial video attacks have seldom been explored. In this paper, we propose a sparse adversarial attack strategy on videos (DeepSAVA). Our model aims to add a small human-imperceptible perturbation to the key frame of the input video to fool the classifiers. To carry out an effective attack that mirrors real-world scenarios, our algorithm integrates spatial transformation perturbations into the frame. Instead of using the lp norm to gauge the disparity between the perturbed frame and the original frame, we employ the structural similarity index (SSIM), which has been established as a more suitable metric for quantifying image alterations resulting from spatial perturbations. We employ a unified optimisation framework to combine spatial transformation with additive perturbation, thereby attaining a more potent attack. We design an effective and novel optimisation scheme that alternatively utilises Bayesian Optimisation (BO) to identify the most critical frame in a video and stochastic gradient descent (SGD) based optimisation to produce both additive and spatial-transformed perturbations. Doing so enables DeepSAVA to perform a very sparse attack on videos for maintaining human imperceptibility while still achieving state-of-the-art performance in terms of both attack success rate and adversarial transferability. Furthermore, built upon the strong perturbations produced by DeepSAVA, we design a novel adversarial training framework to improve the robustness of video classification models. Our intensive experiments on various types of deep neural networks and video datasets confirm the superiority of DeepSAVA in terms of attacking performance and efficiency. When compared to the baseline techniques, DeepSAVA exhibits the highest level of performance in generating adversarial videos for three distinct video classifiers. Remarkably, it achieves an impressive fooling rate ranging from 99.5% to 100% for the I3D model, with the perturbation of just a single frame. Additionally, DeepSAVA demonstrates favourable transferability across various time series models. The proposed adversarial training strategy is also empirically demonstrated with better performance on training robust video classifiers compared with the state-of-the-art adversarial training with projected gradient descent (PGD) adversary.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Teorema de Bayes , Reconhecimento Psicológico , Fatores de Tempo
2.
IEEE Trans Pattern Anal Mach Intell ; 45(2): 2492-2504, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35254978

RESUMO

The growth of videos in our digital age and the users' limited time raise the demand for processing untrimmed videos to produce shorter versions conveying the same information. Despite the remarkable progress that summarization methods have made, most of them can only select a few frames or skims, creating visual gaps and breaking the video context. This paper presents a novel weakly-supervised methodology based on a reinforcement learning formulation to accelerate instructional videos using text. A novel joint reward function guides our agent to select which frames to remove and reduce the input video to a target length without creating gaps in the final video. We also propose the Extended Visually-guided Document Attention Network (VDAN+), which can generate a highly discriminative embedding space to represent both textual and visual data. Our experiments show that our method achieves the best performance in Precision, Recall, and F1 Score against the baselines while effectively controlling the video's output length.

3.
PLoS One ; 17(4): e0267471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452494

RESUMO

The development of new drugs is a very complex and time-consuming process, and for this reason, researchers have been resorting heavily to drug repurposing techniques as an alternative for the treatment of various diseases. This approach is especially interesting when it comes to emerging diseases with high rates of infection, because the lack of a quickly cure brings many human losses until the mitigation of the epidemic, as is the case of COVID-19. In this work, we combine an in-house developed machine learning strategy with docking, MM-PBSA calculations, and metadynamics to detect potential inhibitors for SARS-COV-2 main protease among FDA approved compounds. To assess the ability of our machine learning strategy to retrieve potential compounds we calculated the Enrichment Factor of compound datasets for three well known protein targets: HIV-1 reverse transcriptase (PDB 4B3P), 5-HT2A serotonin receptor (PDB 6A94), and H1 histamine receptor (PDB 3RZE). The Enrichment Factor for each target was, respectively, 102.5, 12.4, 10.6, which are considered significant values. Regarding the identification of molecules that can potentially inhibit the main protease of SARS-COV-2, compounds output by the machine learning step went through a docking experiment against SARS-COV-2 Mpro. The best scored poses were the input for MM-PBSA calculations and metadynamics using CHARMM and AMBER force fields to predict the binding energy for each complex. Our work points out six molecules, highlighting the strong interaction obtained for Mpro-mirabegron complex. Among these six, to the best of our knowledge, ambenonium has not yet been described in the literature as a candidate inhibitor for the SARS-COV-2 main protease in its active pocket.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química
4.
Eur Phys J B ; 94(1): 40, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531876

RESUMO

ABSTRACT: Economies across the globe were brought to their knees due to lockdowns and social restriction measures to contain the spread of the SARS-CoV-2, despite the quick switch to remote working. This downfall may be partially explained by the "water cooler effect", which holds that higher levels of social interaction lead to higher productivity due to a boost in people's mood. Somewhat paradoxically, however, there are reports of increased productivity in the remote working scenario. Here we address quantitatively this issue using a variety of experimental findings of social psychology that address the interplay between mood, social interaction and productivity to set forth an agent-based model for a workplace composed of extrovert and introvert agent stereotypes that differ solely on their propensities to initiate a social interaction. We find that the effects of curtailing social interactions depend on the proportion of the stereotypes in the working group: while the social restriction measures always have a negative impact on the productivity of groups composed predominantly of introverts, they may actually improve the productivity of groups composed predominantly of extroverts. Our results offer a proof of concept that the paradox of productivity during quarantine can be explained by taking into account the distinct effects of the social distancing measures on extroverts and introverts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...