Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Cell Mater ; 41: 502-516, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970477

RESUMO

Genetic conditions, traumatic injuries, carious lesions and periodontal diseases are all responsible for dental pathologies. The current clinical approaches are based on the substitution of damaged dental tissues with inert materials, which, however, do not ensure full physiological recovery of the teeth. Different populations of dental mesenchymal stem cells have been isolated from dental tissues and several attempts have already been made at using these stem cells for the regeneration of human dental tissues. Despite encouraging progresses, dental regenerative therapies are very far from any clinical applications. This is tightly connected with the absence of proper platforms that would model and faithfully mimic human dental tissues in their complexity. Therefore, in the last decades, many efforts have been dedicated for the development of innovative systems capable of emulating human tooth physiology in vitro. This review focuses on the use of in vitro culture systems, such as bioreactors and "organ-on-a-chip" microfluidic devices, for the modelling of human dental tissues and their potential use for dental regeneration and drug testing.


Assuntos
Regeneração/fisiologia , Dente/fisiologia , Animais , Humanos , Células-Tronco Mesenquimais/fisiologia , Engenharia Tecidual/métodos
2.
J Biol Regul Homeost Agents ; 33(6): 1715-1723, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31797649

RESUMO

Ascorbic acid (AS), also known as vitamin C or ascorbate, is an essential dietary nutrient which plays a vital role in biological processes through various different mechanisms, in particular for the biosynthesis of collagen. The aim of the study was to establish the possibility of enhancing the osteogenic differentiation potential by manipulating the cellular micro-environment, through AS supplementation in human gingival mesenchymal stem cells (hGMSCs) at different concentrations, such as 60 and 90 µg/mL, for three weeks. Human GMSCs are considered a stem cell population, easily obtainable and displaying a remarkable immunotherapeutic potential and regenerative repair expression. Osteogenic differentiation level induced from AS was assayed by histochemical characterization, using light microscopy through Alizarin red S staining. The transcript levels of Collagen 1A1 (COL1A1), runtrelated transcription factor 2 (RUNX2), bone morphogenetic protein 2/4 (BMP2/4), osteopontin (OPN) and osteonectin (SPARC) were determined by quantitative RT-PCR. Protein expression of COL1A1, RUNX2, BMP2/4, OPN, SPARC were studied through Western blotting and confocal laser scanning microscopy (CLSM). Our results demonstrate that AS supports osteogenic differentiation in stem cells from gingiva niche as shown by osteogenic marker upregulation and by de novo production of calcium phosphate deposits as revealed by Alizarin red S staining. In summary, the results of the current study provide evidence that hGMSCs undergo osteogenic differentiation with AS treatment, for that reason AS could be a promising candidate for the prevention and healing of bone-related diseases.


Assuntos
Ácido Ascórbico/farmacologia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Osteogênese , Células Cultivadas , Gengiva/citologia , Humanos
3.
Int Endod J ; 48(9): 839-49, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25231818

RESUMO

AIM: To evaluate the effect of TEGDMA on human gingival fibroblasts (HGFs) in vitro co-cultured with Streptococcus mitis, focusing on the signalling pathways underlying cell tissue remodelling and inflammatory response processes. METHODOLOGY: ß1 integrin expression was evaluated by means of imaging flow cytometry. The Western blot technique was used to investigate the expression of protein kinase C (PKC), extracellular signal-regulated kinase (ERK), matrix metalloproteinase 9 (MMP9) and 3 (MMP3). RT-PCR was performed to quantify nuclear factor-kb subunits (Nf-kb1, ReLa), IkB kinase ß (IkBkB), cyclooxygenase II (COX-2) and tumour necrosis factor-α (TNF-α) mRNA levels. Statistical analysis was performed using the analysis of variance (anova). RESULTS: When HGFs are co-cultured with S. mitis, ß1 integrin intensity, phosphorylated PKC (p-PKC), activated ERK (p-ERK), IkBkB mRNA level and MMP9 expression increased (for all molecules P < 0.05 HGFs versus HGFs co-cultured with S. mitis). A higher level of MMP3 in HGFs treated with TEGDMA was recorded (P < 0.05 HGFs versus HGFs exposed to TEGDMA). COX-2 inflammatory factor mRNA level appeared higher in HGFs exposed to 1 mmol L(-1) TEGDMA (P < 0.01 HGFs versus HGFs exposed to TEGDMA), whereas TNF-α gene expression was higher in HGFs co-cultured with S. mitis (P < 0.05 HGFs versus HGFs co-cultured with S. mitis). CONCLUSIONS: ß1 integrin triggered the signalling pathway, transduced by p-PKCα and involving ERK 1 and 2 and MMPs. This pathway resulted in an unbalanced equilibrium in tissue remodelling process, along with inflammatory response when HGFs are exposed to bacteria or biomaterial alone. On the contrary, the TEGDMA/S. mitis combination restored the balance between extracellular matrix deposition and degradation and prevented an inflammatory response.


Assuntos
Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Ácidos Polimetacrílicos/farmacologia , Streptococcus mitis/efeitos dos fármacos , Técnicas de Cocultura , Fibroblastos/citologia , Fibroblastos/enzimologia , Gengiva/citologia , Gengiva/enzimologia , Humanos , Inflamação/metabolismo , Integrina beta1/metabolismo , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais , Streptococcus mitis/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...