Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1314: 106-14, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24075459

RESUMO

Many physical phenomena are affected by the structure of water interfaces, yet it remains an active and controversial subject. A great deal of recent theoretical endeavour and computer simulations question the validity of the Onsager Samaras theory of the ion-free interface between an electrolyte solution and an hydrophobic surface. Experimental results play a crucial role in assessing the legitimacy of the theories. Experimental data are scarce, while simulation results suggest an increasing surface affinity of ions with increasing chaotropic character, in dramatic contradiction to the classical view. Chromatography is a powerful separative technique, but we originally used it as a tool to detect the adsorption of chloride electrolytes and sodium electrolytes, strongly expected to shun any dielectric boundary, onto an hydrophobic surface, and to rank ions according to their adsorbophilicities. Frontal analysis gave unequivocal experimental evidence to this unexpected phenomenon and it was used to quantify it. The infinite dilution equilibrium constants for adsorption of kosmotropes and chaotropes onto the interface were obtained and contrasted to the Jones-Dole B viscosity coefficients, that is a common quantifier of the Hofmeister effect. It is clear that (i) the more chaotropic the ion is, the more it contributes to the global adsorbophilicity of the electrolyte; (ii) the influence of the variable anion is more than twofold that of the variable cation, thereby confirming a robust observation in many other physical systems. Standard free energy of adsorption for each electrolyte was calculated and its reliability was commented upon. The central issue in this paper is the effective and ascertained adsorption of electrolytes onto an hydrophobic surface and the fact that the adsorbophilicity of an electrolyte may be inferred from its position in the Hofmeister series.


Assuntos
Cromatografia Líquida/métodos , Compostos Inorgânicos/química , Água/química , Adsorção , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...