Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 343: 126044, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34619322

RESUMO

A novel gasification fed-batch reactor enabling both thermogravimetric and gas analysis of large samples (up to tens of grams) was designed and tested. Air gasification experiments on food-court waste representative samples and its components were performed at 700 °C and 800 °C using ER = 0.3. At both temperatures, the lignocellulosics fraction produced highest H2 concentration (greater than 21% at 800 °C) while the plastic components generated less H2 regardless of process temperature (2.44%-7.08%). Synergistic effects of multiple components gasification with respect to H2 production was noticed through its non-linear evolution at 700 °C (ranging from 1.18% to 5.38%). A strong negative effect was observed at 800 °C; plastic addition reduced H2 production when combined with lignocellulosic and organic matter (1.02% to 9.73%). The same effects were observed for CH4 formation. This phenomenon was validated by kinetic analysis of decay curves of all components and their mixtures at the beginning of gasification in entire temperature region.


Assuntos
Eliminação de Resíduos , Alimentos , Cinética , Plásticos , Temperatura
2.
Environ Geochem Health ; 44(6): 1683-1696, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34414519

RESUMO

Biochar obtained by pyrolysis is receiving great research interest as it is perceived to be a renewable resource available for agronomic and environmental applications. Since biochar is a highly heterogeneous material with chemical composition that varies widely depending on feedstock and pyrolysis conditions, this study compares the characteristics of biochar produced by pyrolysis at six temperature levels ranging between 300 and 800 °C of two types of biomass, i.e. rapeseed straw (RS)-agriculture waste and poplar tree shavings (PP)-forest waste from furniture making. Twelve biochars were generated via pyrolysis under low oxygen conditions of the selected biomasses in an electrically heated batch reactor. To determine how pyrolysis temperature affects the properties of biochars and consequently their possible utilization, physical, chemical, thermal, porosity and EDX analysis were measured for all biochars and for the corresponding feedstocks. SEM images of the biochar revealed that an increase in temperature led to a higher number of pores for PP biochar compared to RS biochar, and that PP biochar pores tended to shrink with temperature. The elemental composition and the pH of biochars were also compared. Based on the experimental results a utilization matrix was designed as to offer indications concerning possible applications of RS and PP biochars in substitution to fossil derived products for soil remediation (e.g., agriculture fertilizers) and in environmental applications (e.g., removal of pollutants).


Assuntos
Brassica napus , Biomassa , Carvão Vegetal/química , Romênia , Solo/química , Temperatura
3.
Waste Manag ; 47(Pt A): 133-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26164851

RESUMO

The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels.


Assuntos
Biocombustíveis/análise , Gases/análise , Resíduos Industriais/análise , Gerenciamento de Resíduos/métodos , Osso e Ossos/química , Indústria de Processamento de Alimentos , Carne/análise , Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...