Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(14): 3325-3333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38592443

RESUMO

Extracellular vesicles (EVs) have garnered much interest due to their fundamental role in intracellular communication and their potential utility in clinical diagnostics and as biotherapeutic vectors. Of particular relevance is the subset of EVs referred to as exosomes, ranging in size from 30 to 150 nm, which contain incredible amounts of information about their cell of origin, which can be used to track the progress of disease. As a complementary action, exosomes can be engineered with therapeutic cargo to selectively target diseases. At present, the lack of highly efficient methods of isolation/purification of exosomes from diverse biofluids, plants, and cell cultures is a major bottleneck in the fundamental biochemistry, clinical analysis, and therapeutic applications. Equally impactful, the lack of effective in-line means of detection/characterization of isolate populations, including concentration and sizing, is limiting in the applications. The method presented here couples hydrophobic interaction chromatography (HIC) performed on polyester capillary-channeled polymer (C-CP) fiber columns followed by in-line optical absorbance and multi-angle light scattering (MALS) detection for the isolation and characterization of EVs, in this case present in the supernatant of Chinese hamster ovary (CHO) cell cultures. Excellent correlation was observed between the determined particle concentrations for the two detection methods. C-CP fiber columns provide a low-cost platform (< $5 per column) for the isolation of exosomes in a 15-min workflow, with complementary absorbance and MALS detection providing very high-quality particle concentration and sizing information.


Assuntos
Cricetulus , Exossomos , Exossomos/química , Animais , Células CHO , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Luz , Espalhamento de Radiação , Cricetinae
2.
J Chromatogr A ; 1718: 464722, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359690

RESUMO

Immunoglobulin G (IgG) is the most common monoclonal antibody (mAb) grown for therapeutic applications. While IgG is often selectively isolated from cell lines using protein A (ProA) chromatography, this is only a stepping stone for complete characterization. Further classification can be obtained from weak cation exchange chromatography (WCX) to determine IgG charge variant distributions. The charge variants of monoclonal antibodies can influence the stability and efficacy in vivo, and deviations in charge heterogeneity are often cell-specific and sensitive to upstream process variability. Current methods to characterize IgG charge variants are often performed off-line, meaning that the IgG eluate from the ProA separation is collected, diluted to adjust the pH, and then transferred to the WCX separation, adding time, complexity, and potential contamination to the sample analysis process. More recently, reports have appeared to streamline this separation using in-line two-dimensional liquid chromatography (2D-LC). Presented here is a novel, 2D-LC coupling of ProA in the first dimension (1D) and WCX in the second dimension (2D) chromatography. As anticipated, the initial direct column coupling proved to be challenging due to the pH incompatibility between the mobile phases for the two stages. To solve the solvent compatibility issue, a size exclusion column was placed in the switching valve loop of the 2D-LC instrument to act as a means for the on-line solvent exchange. The efficacy of the methodology presented was confirmed through a charge variant determination using the NIST monoclonal antibody standard (NIST mAb), yielding correct acidic, main, and basic variant compositions. The methodology was employed to determine the charge variant profile of IgG from an in-house cultured Chinese hamster ovary (CHO) cell supernatant. It is believed that this methodology can be easily implemented to provide higher-throughput assessment of IgG charge variants for process monitoring and cell line development.


Assuntos
Imunoglobulina G , Proteína Estafilocócica A , Cricetinae , Animais , Cricetulus , Imunoglobulina G/química , Cromatografia por Troca Iônica/métodos , Células CHO , Anticorpos Monoclonais , Cátions , Técnicas de Cultura de Células , Solventes
3.
Anal Chem ; 95(48): 17886-17893, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995145

RESUMO

Cultured cell lines are very commonly used for the mass production of therapeutic proteins, such as monoclonal antibodies (mAbs). In particular, Chinese hamster ovary (CHO) cell lines are widely employed due to their high tolerance to variations in experimental conditions and their ability to grow in suspension or serum free media. CHO cell lines are known for their ability to produce high titers of biotherapeutic products such as immunoglobulin G (IgG). An emergent alternative means of treating diseases, such as cancer, is the use of gene therapies, wherein genetic cargo is "packaged" in nanosized vesicular structures, referred to as "vectors". One particularly attractive vector option is extracellular vesicles (EVs), of which exosomes are of greatest interest. While exosomes can be harvested from virtually any human body fluid, bovine milk, or even plants, their production in cell cultures is an attractive commercial approach. In fact, the same CHO cell types employed for mAb production also produce exosomes as a natural byproduct. Here, we describe a single integrated 2D liquid chromatography (2DLC) method for the quantitative recovery of both exosomes and antibodies from a singular sample aliquot. At the heart of the method is the use of polyester capillary-channeled polymer (C-CP) fibers as the first dimension column, wherein exosomes/EVs are captured from the supernatant sample and subsequently determined by multiangle light scattering (MALS), while the mAbs are captured, eluted, and quantified using a protein A-modified C-CP fiber column in the second dimension, all in a 10 min workflow. These efforts demonstrate the versatility of the C-CP fiber phases with the capacity to harvest both forms of therapeutics from a single bioreactor, suggesting an appreciable potential impact in the field of biotherapeutics production.


Assuntos
Anticorpos Monoclonais , Exossomos , Cricetinae , Animais , Humanos , Cricetulus , Anticorpos Monoclonais/química , Células CHO , Cromatografia Líquida , Polímeros , Técnicas de Cultura de Células
4.
Anal Chem ; 95(32): 12131-12138, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37466149

RESUMO

Plutonium measurements are essential to the nuclear forensics and safeguards community. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source coupled with an Orbitrap mass spectrometer is a proven platform for uranium isotope ratio determinations. This work expands the LS-APGD-Orbitrap platform capabilities by reporting the first-ever analysis of plutonium with the LS-APGD and the first-ever measurement of elemental plutonium with an Orbitrap mass spectrometer. This coupling has the potential to dramatically reduce the complex sample manipulations required for traditional analysis techniques employed for actinide isotope ratio determinations. As a first step toward the goal of simultaneous uranium and plutonium isotope ratio determinations, the initial characterization and optimization of the platform for the detection of plutonium are reported. Collision-induced dissociation modality settings were optimized to reduce water-related and other molecular clusters containing plutonium, maximizing 242Pu16O2+ responses. A design of experiments study was conducted to optimize the discharge conditions of the dual-electrode LS-APGD toward the responsivity of 242Pu16O2+. The measurement sensitivity was determined from a Pu response curve, yielding a limit of detection of 10 fg (absolute) of total analyte when data was collected and processed with a Spectroswiss FTMS Booster X2 data acquisition system. Additionally, plutonium and uranium were measured in a simultaneous acquisition, and each analyte remained unaffected by the other. It is believed that the LS-APGD-Orbitrap platform could be a valuable addition to the nuclear forensics' toolbox and, indeed, other scientific disciplines and regulatory communities in which rapid, high-resolution plutonium determinations are paramount.

5.
J Chromatogr A ; 1701: 464051, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37209520

RESUMO

Polymeric materials are readily available, durable materials that have piqued the interest of many diverse fields, ranging from biomedical engineering to construction. The physiochemical properties of a polymer dictate the behavior and function, where large polydispersity among polymer properties can lead to problems; however, current polymer analysis methods often only report results for one particular property. Two-dimensional liquid chromatography (2DLC) applications have become increasingly popular due to the ability to implement two chromatographic modalities in one platform, meaning the ability to simultaneously address multiple physiochemical aspects of a polymer sample, such as functional group content and molar mass. The work presented employs size exclusion chromatography (SEC) and reversed-phase (RP) chromatography, through two coupling strategies: SEC x RP and RP x RP separations of the water-soluble polymers poly(methacrylic acid) (PMA) and polystyrene sulfonic acid (PSSA). Capillary-channeled polymer (C-CP) fiber (polyester and polypropylene) stationary phases were used for the RP separations. Particularly attractive is the fact that they are easily implemented as the second dimension in 2DLC workflows due to their low backpressure (<1000 psi at ∼70 mm sec-1) and fast separation times. In-line multi-angle light scattering (MALS) was also implemented for molecular weight determinations of the polymer samples, with the molecular weight of PMA ranging from 5 × 104 to 2 × 105 g mol-1, while PSSA ranges from 105 to 108 g mol-1. While the orthogonal pairing of SEC x RP addresses polymer sizing and chemistry, this approach is limited by long separation times (80 min), the need for high solute concentrations (PMA = 1.79 mg mL-1 and PSSA = 0.175 mg mL-1 to yield comparable absorbance responses) due to on-column dilution and subsequently limited resolution in the RP separation space. With RP x RP couplings, separation times were significantly reduced (40 min), with lower sample concentrations (0.595 mg mL-1 of PMA and 0.05 mg mL-1 of PSSA) required. The combined RP strategy provided better overall distinction in the chemical distribution of the polymers, yielding 7 distict species versus 3 for the SEC x RP coupling.


Assuntos
Polímeros , Água , Polímeros/química , Cromatografia de Fase Reversa/métodos , Cromatografia em Gel , Poliésteres , Cromatografia Líquida de Alta Pressão/métodos
6.
Appl Spectrosc ; 77(8): 885-906, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36636789

RESUMO

Just over a decade ago, a truly outside-of-the-box approach to isotope ratio mass spectrometry (IRMS) was undertaken between research groups at Clemson University and the Pacific Northwest National Laboratory. The original motivation dealt with projections as to whether or not microplasmas could be developed into practical elemental ionization sources, perhaps for transportable analysis applications. In particular, the use of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) was pursued. Its interfacing to an ultra-high resolution Orbitrap platform, proved not only facile, but opened up a wealth of potential applications. Here, we lay out a historical, tutorial description of the interfacing and the evolution of the methodology regarding IRMS of uranium. Practical challenges and opportunities are described, which hopefully provide guidance to further applications in high resolution IRMS. It is hoped that, while detailed and lengthy, the didactic nature of the presentation provides experimental insights and tips, and also serves as an homage to our very good friend, Professor Gary M. Hieftje, whose scientific inspiration and comradery have been immeasurably important in our own careers.

7.
Biotechnol Prog ; 39(1): e3311, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308722

RESUMO

Cell culture media metal content is critical in mammalian cell growth and monoclonal antibody productivity. The variability in metal concentrations has multiple sources of origin. As such, there is a need to analyze media before, during, and after production. Furthermore, it is not the simple presence of a given metal that can impact processes, but also their chemical form that is, speciation. To a first approximation, it is instructive to simply and quickly ascertain if the metals exist as inorganic (free metal) ions or are part of an organometallic complex (ligated). Here we present a simple workflow involving the capture of ligated metals on a fiber stationary phase with passage of the free ions to an inductively coupled plasma optical emission spectrometry for quantification; the captured species are subsequently eluted for quantification. This first level of speciation (free vs. ligated) can be informative towards sources of contaminant metal species and means to assess bioreactor processes.


Assuntos
Técnicas de Cultura de Células , Metais , Espectrometria de Massas/métodos , Análise Espectral , Metais/análise
8.
Electrophoresis ; 44(1-2): 190-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973415

RESUMO

Exosomes, a subset of extracellular vesicles (EVs, 30-200-nm diameter), serve as biomolecular snapshots of their cell of origin and vehicles for intercellular communication, playing roles in biological processes, including homeostasis maintenance and immune modulation. The large-scale processing of exosomes for use as therapeutic vectors has been proposed, but these applications are limited by impure, low-yield recoveries from cell culture milieu (CCM). Current isolation methods are also limited by tedious and laborious workflows, especially toward an isolation of EVs from CCM for therapeutic applications. Employed is a rapid (<10 min) EV isolation method on a capillary-channeled polymer fiber spin-down tip format. EVs are isolated from the CCM of suspension-adapted human embryonic kidney cells (HEK293), one of the candidate cell lines for commercial EV production. This batch solid-phase extraction technique allows 1012 EVs to be obtained from only 100-µl aliquots of milieu, processed using a benchtop centrifuge. The tip-isolated EVs were characterized using transmission electron microscopy, multi-angle light scattering, absorbance quantification, an enzyme-linked immunosorbent assay to tetraspanin marker proteins, and a protein purity assay. It is believed that the demonstrated approach has immediate relevance in research and analytical laboratories, with opportunities for production-level scale-up projected.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Polímeros , Células HEK293 , Vesículas Extracelulares/metabolismo , Rim
9.
Talanta ; 252: 123779, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35994804

RESUMO

In the emerging field of phyto-nanotechnology, 30-200 nm plant-derived extracellular vesicles (PDEVs) are now known to contain active biomolecules that mediate cell-to-cell communication processes in a manner very similar to exosomes in mammalian cells. The ability to deliver cargo across cellular membranes suggests that botanical systems could be used in the mass production of therapeutic vectors to transport exogenous molecules into human cells. The fundamental biochemical characteristics of PDEVs remain poorly understood due to the lack of efficient methods to isolate and characterize these nanovesicles. Described here is a rapid PDEV isolation method using a hydrophobic interaction chromatography (HIC)-based extraction performed on a capillary-channeled polymer (C-CP) fiber spin-down tip. The C-CP solid-phase extraction method is performed using a standard table-top centrifuge, enabling the isolation and concentration of PDEVs (>1 × 1010 particles from 100 µL of sample). PDEVs of 189 nm average diameter were obtained from 20 common fruit and vegetable stocks. The size, integrity, and purity of the recovered PDEVs were assessed using transmission electron microscopy (TEM), multi-angle light scattering (MALS), absorbance quantification, a protein purity assay, and an enzyme-linked immunosorbent assay (ELISA) to the PEN1 PDEV surface marker protein. The HIC C-CP tip isolation method allows for concentrated PDEV recoveries (up to 2 × 1011 EVs) on reasonable time scales (<15 min) and low cost (<$1), with the purity and integrity fit for fundamental research and downstream applications.


Assuntos
Vesículas Extracelulares , Polímeros , Animais , Humanos , Polímeros/química , Verduras , Frutas , Interações Hidrofóbicas e Hidrofílicas , Mamíferos
10.
J Sep Sci ; 45(20): 3811-3826, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986632

RESUMO

A trilobal capillary-channeled polymer fiber stationary phase is evaluated for its performance for intact protein separations under reversed-phase high-performance liquid chromatography conditions. The separation quality, operational characteristics, and protein dynamic loading capacity on the fiber phases are compared to commercially-available superficially porous and monolithic columns. The trilobal or "y-shaped" polypropylene fiber phase was employed to separate a synthetic mixture of five proteins (having diverse chemistries and molecular weights). The separation quality was evaluated based on the resolution, peak heights/recoveries, peak widths, and peak areas. The present work illustrates the unique ability to operate at higher linear velocities (47.5 mm/s) while maintaining lower back pressures (∼4 MPa), faster separation times (<8 min), and faster gradient rates using the fiber columns while yielding comparable chromatographic performance to the commercial columns. The separations employing the commercial stationary phases operate at lower linear velocities (∼3.0 mm/s), higher back pressures (∼9 MPa), require longer separation times (10 min), and require slightly higher compositions of organic mobile phase to effect protein elution. Likewise, based on breakthrough loading analysis of lysozyme and bovine serum albumin, the trilobal, polypropylene C-CP fiber column stationary phases demonstrate 3-9X greater binding capacities on a bed volume basis versus the commercial columns.


Assuntos
Polímeros , Polipropilenos , Polímeros/química , Porosidade , Polipropilenos/química , Cromatografia de Fase Reversa , Soroalbumina Bovina/química , Cromatografia Líquida de Alta Pressão/métodos
11.
Anal Bioanal Chem ; 414(13): 3813-3825, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35412060

RESUMO

Capillary-channeled polymer fiber (C-CP) solid-phase extraction tips have demonstrated the ability to produce clean and concentrated extracellular vesicle (EV) recoveries from human urine samples in the small EV size range (< 200 nm). An organic modifier-assisted hydrophobic interaction chromatography (HIC) approach is applied in the spin-tip method under non-denaturing conditions-preserving the structure and bioactivity of the recovered vesicles. The C-CP tip method can employ either acetonitrile or glycerol as an elution modifier. The EV recoveries from the C-CP tip method (using both of these solvents) were compared to those obtained using the ultracentrifugation (UC) and polymer precipitation (exoEasy and ExoQuick) EV isolation methods for the same human urine specimen. The biophysical and quantitative characteristics of the recovered EVs using the five isolation methods were assessed based on concentration, size distribution, shape, tetraspanin surface marker protein content, and purity. In comparison to the traditionally used UC method and commercially available polymeric precipitation-based isolation kits, the C-CP tip introduces significant benefits with efficient (< 15 min processing of 12 samples here) and low-cost (< $1 per tip) EV isolations, employing sample volumes (10 µL-1 mL) and concentration (up to 4 × 1012 EVs mL-1) scales relevant for fundamental and clinical analyses. Recoveries of the target vesicles versus matrix proteins were far superior for the tip method versus the other approaches.


Assuntos
Vesículas Extracelulares , Polímeros , Glicerol , Humanos , Extração em Fase Sólida , Solventes
12.
Anal Chem ; 93(33): 11506-11514, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34375523

RESUMO

Many fields of basic and applied sciences, including geochronology, astronomy, metabolism, etc., rely on the ability of mass spectrometry to obtain isotope ratio measurements having a high degree of certainty. The inability to resolve difficult isobaric interferences plagues certain measurements. A combined atomic and molecular (CAM) ionization source has been interfaced to a high-field Orbitrap mass spectrometer to alleviate severe atomic, isobaric interferences. This work examines the geochronologically significant 87Sr and 87Rb isotope pair. The mass difference between 87Sr and 87Rb is approximately 0.3 mDa, requiring a minimum resolving power (R = m/Δm) of ∼290,000, a value ∼30× higher than available with sector-field elemental mass spectrometers. Under ultrahigh-resolution conditions, Sr isotope ratio accuracy and precision were evaluated using NIST Sr SRM 987, yielding precision values of <0.1% relative standard deviation (RSD) for the major isotopes and a calculated LOD of 2 pg mL-1 (120 fg of Sr for a 60 µL injection). In addition to manipulating the signal transient length, the total number of ions in the electrostatic trap and the 87Sr/87Rb concentration ratio were found to influence resolution. Ultimately, the isotopes were baseline-resolved with a calculated mass resolution of >1.7M. At equal 87Sr and 87Rb intensities, 87Sr/86Sr was measured as 0.71294 (a relative error of only 0.37%) with a precision of 0.097% RSD, clearly reflecting the alleviation of the isobaric interference.


Assuntos
Isótopos , Espectrometria de Massas , Análise Espectral
13.
Analyst ; 146(13): 4314-4325, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34105528

RESUMO

Extracellular vesicles (EVs) play essential roles in biological systems based on their ability to carry genetic and protein cargos, intercede in cellular communication and serve as vectors in intercellular transport. As such, EVs are species of increasing focus from the points of view of fundamental biochemistry, clinical diagnostics, and therapeutics delivery. Of particular interest are 30-200 nm EVs called exosomes, which have demonstrated high potential for use in diagnostic and targeted delivery applications. The ability to collect exosomes from patient biofluid samples would allow for comprehensive yet remote diagnoses to be performed. While several exosome isolation methods are in common use, they generally produce low recoveries, whose purities are compromised by concomitant inclusion of lipoproteins, host cell proteins, and protein aggregates. Those methods often work on lengthy timescales (multiple hours) and result in very low throughput. In this study, capillary-channeled polymer (C-CP) fiber micropipette tips were employed in a hydrophobic interaction chromatography (HIC) solid-phase extraction (SPE) workflow. Demonstrated is the isolation of exosomes from human urine, saliva, cervical mucus, serum, and goat milk matrices. This method allows for quick (<15 min) and low-cost (<$1 per tip) isolations at sample volume and time scales relevant for clinical applications. The tip isolation was evaluated using absorbance (scattering) detection, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). Exosome purity was assessed by Bradford assay, based on the removal of free proteins. An enzyme-linked immunosorbent assay (ELISA) to the CD81 tetraspanin protein was used to confirm the presence of the known exosomal-biomarker on the vesicles.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Extração em Fase Sólida
14.
Biotechnol Prog ; 37(5): e3181, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106525

RESUMO

Trace metals play a critical role in the development of culture media used for the production of therapeutic proteins. Iron has been shown to enhance the productivity of monoclonal antibodies during Chinese hamster ovary (CHO) cell culture. However, the redox activity and pro-oxidant behavior of iron may also contribute toward the production of reactive oxygen species (ROS). In this work, we aim to clarify the influence of trace iron by examining the relationship between iron supplementation to culture media, mAb productivity and glycosylation, and oxidative stress interplay within the cell. Specifically, we assessed the impacts of iron supplementation on (a) mAb production and glycosylation; (b) mitochondria-generated free hydroxyl radicals (ROS); (c) the cells ability to store energy during oxidative phosphorylation; and (d) mitochondrial iron concentration. Upon the increase of iron at inoculation, CHO cells maintained a capacity to rebound from iron-induced viability lapses during exponential growth phase and improved mAb productivity and increased mAb galactosylation. Fluorescent labeling of the mitochondrial hydroxyl radical showed enhanced environments of oxidative stress upon iron supplementation. Additional labeling of active mitochondria indicated that, despite the enhanced production of ROS in the mitochondria, mitochondrial membrane potential was minimally impacted. By replicating iron treatments during seed train passaging, the CHO cells were observed to adapt to the shock of iron supplementation prior to inoculation. Results from these experiments demonstrate that CHO cells have the capacity to adapt to enhanced environments of oxidative stress and improve mAb productivity and mAb galactosylation with minimal perturbations to cell culture.


Assuntos
Anticorpos Monoclonais , Meios de Cultura , Ferro/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Meios de Cultura/química , Meios de Cultura/farmacologia , Glicosilação/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
15.
PLoS One ; 16(6): e0252662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34077462

RESUMO

Breast cancer cells were reported to up-regulate human prolactin receptor (PRLR) to assist their growth through the utilization of prolactin (PRL) as the growth factor, which makes PRLR a potential therapeutic target for breast cancer. On the other hand, advanced cancer cells tend to down-regulate or shed off stress signal proteins to evade immune surveillance and elimination. In this report, we created a fusion protein consisting of the extracellular domain of MHC class I chain-related protein (MICA), a stress signal protein and ligand of the activating receptor NKG2D of natural killer (NK) cells, and G129R, an antagonistic variant of PRL. We hypothesize that the MICA portion of the fusion protein binds to NKG2D to activate NK cells and the G129R portion binds to PRLR on breast cancer cells, so that the activated NK cells will kill the PRLR-positive breast cancer cells. We demonstrated that the MICA-G129R fusion protein not only binds to human natural killer NK-92 cells and PRLR-positive human breast cancer T-47D cells, but also promotes NK cells to release granzyme B and IFN-γ and enhances the cytotoxicity of NK cells specifically on PRLR-positive cells. The fusion protein, therefore, represents a new approach for the development of breast cancer specific immunotherapy.


Assuntos
Neoplasias da Mama/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores da Prolactina/metabolismo , Morte Celular/fisiologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica , Humanos , Imunoterapia , Células Matadoras Naturais , Fosforilação , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
16.
Anal Chim Acta ; 1167: 338578, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34049630

RESUMO

Exosomes are membrane-bound, cell-secreted vesicles, with sizes ranging from 30 to 150 nm. Exosomes in blood plasma have become proposed targets as measurable indicators of disease conditions. Current methods for plasma-based exosome isolation are time-consuming, complex, and have high operational costs. One of the most commonly reported shortcomings of current isolation protocols is the co-extraction of lipoproteins (e.g. low-density lipoproteins, LDLs) with the target exosomes. This report describes the use of a rapid, single-operation hydrophobic interaction chromatography (HIC) procedure on a polyester (PET) capillary-channeled polymer (C-CP) fiber column, demonstrating the ability to efficiently purify exosomes. The method has previously been demonstrated for isolation of exosomes from diverse biological matrices, but questions were raised about the potential co-elution of LDLs. In the method described herein, a step-gradient procedure sequentially elutes spiked lipoproteins and blood plasma-originating exosomes in 10 min, with the LDLs excluded from the desired exosome fraction. Mass spectrometry (MS) was used to characterize an impurity in the primary LDL material, identifying the presence of exosomal material. Transmission electron microscopy (TEM) and an enzyme-linked immunosorbent assay (ELISA) were used to identify the various elution components. The method serves both as a rapid means of high purity exosome isolation as well as a screening tool for the purity of LDL samples with respect to extracellular vesicles.


Assuntos
Exossomos , Cromatografia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas LDL , Plasma , Poliésteres , Polímeros
17.
J Am Soc Mass Spectrom ; 32(5): 1224-1236, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33793219

RESUMO

Isotope ratio (IR) analysis of natural abundance uranium presents a formidable challenge for mass spectrometry (MS): the required spectral dynamic range needs to enable the quantitatively accurate measurement of the 234UO2 species present at ∼0.0053% isotopic abundance. We address this by empowering a benchtop Orbitrap Fourier transform mass spectrometer (FTMS) coupled with the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ion source and an external high-performance data acquisition system, FTMS Booster X2. The LS-APGD microplasma has demonstrated impressive capabilities regarding elemental and IR analysis when coupled with Orbitrap FTMS. Despite successes, there are limitations regarding the dynamic range and mass resolution that stem from space charge effects and data acquisition and processing restrictions. To overcome these limitations, the FTMS Booster was externally interfaced to an LS-APGD Q Exactive Focus Orbitrap FTMS to obtain time-domain signals (transients) and to process unreduced data. The unreduced time-domain data acquisition with user-controlled processing permit the evaluation of the effects of in-hardware transient phasing, increased transient lengths, advanced transient coadding, varying the length of a transient to be processed with a user-defined time increment, and the use of absorption-mode FT (aFT) processing methods on IR analysis. The added capabilities extend the spectral dynamic range of the instrument to at least 4-5 orders of magnitude and provide a resolution improvement from ∼70k to 900k m/Δm at 200 m/z. The empowered LS-APGD Orbitrap platform allows for the simultaneous measurement of 234UO2 and the prominent 235UO2 and 238UO2 isotopic species at their natural abundances, ultimately yielding improvements in performance when compared to previous uranium IR results on this same Q Exactive Focus instrument.

18.
Anal Methods ; 13(16): 1945-1954, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33913969

RESUMO

Liquid sampling-atmospheric pressure glow discharge-mass spectrometry (LS-APGD-MS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were employed for the quantification of trace metals in cell culture media and their capabilities compared. The LS-APGD is interfaced here to a compact mass spectrometer (Advion CMS) towards the development of an at-bioreactor process monitoring strategy. Both techniques have been previously employed for the quantification of trace metals in samples of various complexities, making them a natural choice for this application. They have also demonstrated comparable analytical figures of merit including limits of detection (LOD), matrix tolerance, etc. While cell culture media is a complex sample, the ICP-OES technique was unaffected by the matrix. However, the LS-APGD-MS suffered from increases in spectral background. Despite this, both techniques achieved appropriate LODs for all metals analyzed in this work (Cu, Fe, Zn, Co, Mn, Ni; LOD < 100 ng mL-1), except for Mn and Ni via LS-APGD-MS. To overcome the increased background seen on the LS-APGD-MS, a capillary channeled polymer (C-CP) polypropylene (PPY) fiber stationary phase was employed as an on-line separation for the removal of organic components prior to sample introduction into the plasma. It was further determined that Ni was retained on the column, preventing the detection of this element via LS-APGD-MS, and insights into metal speciation were discussed. Following implementation of this on-line separation strategy, the agreement between the techniques was acceptable for all analytes, and was excellent for Cu, Fe, and Zn.


Assuntos
Pressão Atmosférica , Polímeros , Técnicas de Cultura de Células , Diferenciação Celular , Análise Espectral
19.
Anal Bioanal Chem ; 413(11): 2985-2994, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33608753

RESUMO

Lentiviruses are increasingly used as gene delivery vehicles for vaccines and immunotherapies. However, the purification of clinical-grade lentivirus vectors for therapeutic use is still troublesome and limits preclinical and clinical experiments. Current purification methods such as ultracentrifugation and ultrafiltration are time consuming and do not remove all of the impurities such as cellular debris, membrane fragments, and denatured proteins from the lentiviruses. The same challenges exist in terms of their analytical characterization. Presented here is the novel demonstration of the chromatographic isolation of virus particles from culture media based on the hydrophobicity characteristics of the vesicles. A method was developed to isolate lentivirus from media using a hydrophobic interaction chromatography (HIC) method performed on a polyester, capillary-channeled polymer (PET C-CP) stationary phase and a standard liquid chromatography apparatus. The method is an extension of the approach developed in this laboratory for the isolation of extracellular vesicles (EVs). Quantitative polymerase chain reaction (qPCR) was used to verify and quantify lentiviruses in elution fractions. Load and elution mobile phase compositions were optimized to affect high efficiency and throughput. The process has been visualized via scanning electron microscopy (SEM) of the fiber surfaces following media injection, the elution of proteinaceous material, and the elution of lentiviruses. This effort has yielded a rapid (<10 min), low-cost (< $15 per column, providing multiple separations), and efficient method for the isolation/purification of lentivirus particles from cell culture media at the analytical scale.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lentivirus/isolamento & purificação , Poliésteres/química , Polímeros/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Reação em Cadeia da Polimerase em Tempo Real , Espectrofotometria Ultravioleta
20.
Electrophoresis ; 42(3): 245-256, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169421

RESUMO

We have developed a rapid, low-cost, and simple separation strategy to separate extracellular vesicles (EVs) from a small amount of serum (i.e.,<100 µL) with minimal contamination by serum proteins and lipoprotein particles to meet the high purity requirement for EV proteome analysis. EVs were separated by a novel polyester capillary channel polymer (PET C-CP) fiber phase/hydrophobic interaction chromatography (HIC) method which is rapid and can process small size samples. The collected EV fractions were subjected to a post-column cleanup protocol using a centrifugal filter to perform buffer exchange and eliminate potential coeluting non-EV proteins while minimizing EV sample loss. Downstream characterization demonstrated that our current strategy can separate EVs with the anticipated exosome-like particle size distribution and high yield (∼1 × 1011 EV particles per mL of serum) in approximately 15 min. Proteome profiling of the EVs reveals that a group of genuine EV components were identified that have significantly less high-abundance blood proteins and lipoprotein particle contamination in comparison to traditional separation methods. The use of this methodology appears to address the major challenges facing EV separation for proteomics analysis. In addition, the EV post-column cleanup protocol proposed in the current work has the potential to be combined with other separation methods, such as ultracentrifugation (UC), to further purify the separated EV samples.


Assuntos
Proteínas Sanguíneas/análise , Vesículas Extracelulares/química , Proteoma/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...