Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250870

RESUMO

IntroductionSubjects recovering from COVID-19 frequently experience persistent respiratory ailments; however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity. MethodsWe performed a prospective cohort study of subjects with persistent symptoms after acute COVID-19, collecting clinical data, pulmonary function tests, and plasma samples used for multiplex profiling of inflammatory, metabolic, angiogenic, and fibrotic factors. ResultsSixty-one subjects were enrolled across two academic medical centers at a median of 9 weeks (interquartile range 6-10) after COVID-19 illness: n=13 subjects (21%) mild/non-hospitalized, n=30 (49%) hospitalized/non-critical, and n=18 subjects (30%) hospitalized/intensive care ("ICU"). Fifty-three subjects (85%) had lingering symptoms, most commonly dyspnea (69%) and cough (58%). Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and diffusing capacity for carbon monoxide (DLCO) declined as COVID-19 severity increased (P<0.05), but did not correlate with respiratory symptoms. Partial least-squares discriminant analysis of plasma biomarker profiles clustered subjects by past COVID-19 severity. Lipocalin 2 (LCN2), matrix metalloproteinase-7 (MMP-7), and hepatocyte growth factor (HGF) identified by the model were significantly higher in the ICU group (P<0.05) and inversely correlated with FVC and DLCO (P<0.05), and were confirmed in a separate validation cohort (n=53). ConclusionsSubjective respiratory symptoms are common after acute COVID-19 illness but do not correlate with COVID-19 severity or pulmonary function. Host response profiles reflecting neutrophil activation (LCN2), fibrosis signaling (MMP-7), and alveolar repair (HGF) track with lung impairment and may be novel therapeutic or prognostic targets. FundingThe study was funded in part by the NHLBI (K08HL130557 to BDK and R01HL142818 to HJC), the DeLuca Foundation Award (AP), a donation from Jack Levin to the Benign Hematology Program at Yale, and Divisional/Departmental funds from Duke University.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20183897

RESUMO

Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of over 3,300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, HGF, IL-8, and G-CSF, as the strongest predictors of critical illness. Neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, we define an essential role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular neutrophil markers that distinguish patients at risk of future clinical decompensation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...