Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6593, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087509

RESUMO

Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and often death. Here we report that deficiency of transcription factor GATA6 is a shared pathological feature of PA endothelial (PAEC) and smooth muscle cells (PASMC) in human PAH and experimental PH, which is responsible for maintenance of hyper-proliferative cellular phenotypes, pulmonary vascular remodeling and pulmonary hypertension. We further show that GATA6 acts as a transcription factor and direct positive regulator of anti-oxidant enzymes, and its deficiency in PAH/PH pulmonary vascular cells induces oxidative stress and mitochondrial dysfunction. We demonstrate that GATA6 is regulated by the BMP10/BMP receptors axis and its loss in PAECs and PASMC in PAH supports BMPR deficiency. In addition, we have established that GATA6-deficient PAEC, acting in a paracrine manner, increase proliferation and induce other pathological changes in PASMC, supporting the importance of GATA6 in pulmonary vascular cell communication. Treatment with dimethyl fumarate resolved oxidative stress and BMPR deficiency, reversed hemodynamic changes caused by endothelial Gata6 loss in mice, and inhibited proliferation and induced apoptosis in human PAH PASMC, strongly suggesting that targeting GATA6 deficiency may provide a therapeutic advance for patients with PAH.


Assuntos
Proteínas Morfogenéticas Ósseas , Fator de Transcrição GATA6 , Estresse Oxidativo , Hipertensão Arterial Pulmonar , Animais , Camundongos , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar Primária Familiar/patologia , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Remodelação Vascular
3.
Nat Commun ; 13(1): 4170, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879310

RESUMO

Vascular dysfunction is a hallmark of chronic diseases in elderly. The contribution of the vasculature to lung repair and fibrosis is not fully understood. Here, we performed an epigenetic and transcriptional analysis of lung endothelial cells (ECs) from young and aged mice during the resolution or progression of bleomycin-induced lung fibrosis. We identified the transcription factor ETS-related gene (ERG) as putative orchestrator of lung capillary homeostasis and repair, and whose function is dysregulated in aging. ERG dysregulation is associated with reduced chromatin accessibility and maladaptive transcriptional responses to injury. Loss of endothelial ERG enhances paracrine fibroblast activation in vitro, and impairs lung fibrosis resolution in young mice in vivo. scRNA-seq of ERG deficient mouse lungs reveales transcriptional and fibrogenic abnormalities resembling those associated with aging and human lung fibrosis, including reduced number of general capillary (gCap) ECs. Our findings demonstrate that lung endothelial chromatin remodeling deteriorates with aging leading to abnormal transcription, vascular dysrepair, and persistent fibrosis following injury.


Assuntos
Fibrose Pulmonar , Idoso , Envelhecimento/genética , Animais , Bleomicina , Células Endoteliais/metabolismo , Fibrose , Humanos , Pulmão/patologia , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
4.
Microcirculation ; 28(1): e12660, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979864

RESUMO

OBJECTIVES: Friend leukemia integration 1 and erythroblast transformation-specific, important regulators of endothelial cell homeostasis, are reduced in microvascular endothelial cells in scleroderma patients, and their deficiency has been implicated in disease pathogenesis. The goal of this study was to identify the mechanisms involved in the protein turnover of friend leukemia integration 1 and erythroblast transformation-specific in microvascular endothelial cells. METHODS: The effects of lysosome and proteosome inhibitors on friend leukemia integration 1 and erythroblast transformation-specific levels were assessed by Western blotting and capillary morphogenesis. The effect of scleroderma and control sera on the levels of friend leukemia integration 1 and erythroblast transformation-specific was examined. RESULTS: The reduction in the protein levels of friend leukemia integration 1 and erythroblast transformation-specific in response to interferon α or Poly:(IC) was reversed by blocking either lysosomal (leupeptin and Cathepsin B inhibitor) or proteosomal degradation (MG132). MG132, leupeptin or CTSB-(i) also counteracted the anti-angiogenic effects of Poly:(IC) or interferon α. Scleroderma sera reduced protein levels of friend leukemia integration 1 and erythroblast transformation-specific in comparison to control sera. Treatment with CTSB(i) increased the levels of friend leukemia integration 1 and erythroblast transformation-specific in a majority of serum-treated samples. CONCLUSIONS: Inhibition of cathepsin B was effective in reversing the reduction of friend leukemia integration 1 and erythroblast transformation-specific protein levels after treatment with interferon α or scleroderma sera, suggesting that targeting cathepsin B may have a beneficial effect in SSc vascular disease.


Assuntos
Catepsina B/metabolismo , Derme/metabolismo , Células Endoteliais/metabolismo , Lisossomos/metabolismo , Microvasos/metabolismo , Proteólise , Proteína Proto-Oncogênica c-fli-1/metabolismo , Adulto , Idoso , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulador Transcricional ERG/metabolismo
5.
Front Immunol ; 11: 800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508810

RESUMO

Scleroderma (SSc) is an autoimmune connective tissue disease characterized by immune dysregulation, vasculopathy, and fibrosis. We have previously demonstrated that low Fli1 expression in SSc fibroblasts and endothelial cells plays an important role in SSc pathogenesis. Cells of myeloid and lymphoid origin also express Fli1 and are dysregulated in patients with SSc, playing key roles in disease pathogenesis. However, the role for immune Fli1 in SSc is not yet clear. Our aim was to elucidate whether Fli1 contributes to the immune dysregulation seen in SSc. Comparison of the expression of Fli1 in monocytes, B- and T-cell fractions of PBMCs isolated from SSc patients and healthy controls (HC), showed an increase in Fli1 levels in monocytes. We used siRNA transfected human myeloid cells and mouse peritoneal macrophages obtained from Fli1 flox/flox LysMCre+/+ mice, and found that markers of alternative macrophage activation were increased with Fli1 deletion. Coculture of Fli1-deficient myeloid cells and primary human or mouse fibroblasts resulted in a potent induction of collagen type I, independent of TGFß upregulation. We next analyzed global gene expression profile in response to Fli1 downregulation, to gain further insight into the molecular mechanisms of this process and to identify differentially expressed genes in myeloid cells. Of relevance to SSc, the top most upregulated pathways were hallmark IFN-γ and IFN-α response. Additionally, several genes previously linked to SSc pathogenesis and fibrosis in general were also induced, including CCL2, CCL7, MMP12, and CXCL10. ANKRD1, a profibrotic transcription co-regulator was the top upregulated gene in our array. Our results show that Fli1-deficient myeloid cells share key features with cells from SSc patients, with higher expression of profibrotic markers and activation of interferon responsive genes, thus suggesting that dysregulation of Fli1 in myeloid cells may contribute to SSc pathogenesis.


Assuntos
Células Mieloides/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Animais , Doenças Autoimunes , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Regulação para Baixo , Fibroblastos/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Expressão Gênica , Voluntários Saudáveis , Humanos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/metabolismo , RNA Interferente Pequeno , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
J Immunol ; 200(1): 248-259, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141862

RESUMO

Endothelial cell (EC) dysfunction has been associated with inflammatory and autoimmune diseases; however, the factors contributing to this dysfunction have not been fully explored. Because activation of TLRs has been implicated in autoimmune diseases, the goal of this study was to determine the effects of TLR ligands on EC function. Human dermal microvascular ECs (HDMECs) treated with TLR3 [Poly(I:C)], TLR4 (LPS), and TLR7 (imiquimod) agonists showed decreased proliferation and a reduced total number of branching tubules in three-dimensional human dermal organoid ex vivo culture. In contrast, the TLR9 ligand class C, ODN2395, increased angiogenesis. The antiproliferative effects of TLR3, TLR4, and TLR7 ligands correlated with significant downregulation of a key regulator of vascular homeostasis, Fli1, whereas TLR9 increased Fli1 levels. Furthermore, Poly(I:C) and LPS induced endothelial to mesenchymal transition that was reversed by the pretreatment with TGF-ß neutralizing Ab or re-expression of Fli1. We showed that Fli1 was required for the HDMEC proliferation by transcriptionally repressing FOXO3A. In contrast to TLR9, which suppressed activation of the FOXO3A pathway, TLR3, TLR4, and TLR7 ligands activated FOXO3A as indicated by decreased phosphorylation and increased nuclear accumulation. The inverse correlation between Fli1 and FOXO3A was also observed in the vasculature of scleroderma patients. This work revealed opposing effects of TLR9 and TLR3, TLR4, and TLR7 on the key angiogenic pathways, Fli1 and FOXO3A. Our results provide a mechanistic insight into the regulation of angiogenesis by TLRs and confirm a central role of Fli1 in regulating vascular homeostasis.


Assuntos
Derme/patologia , Endotélio Vascular/imunologia , Proteína Forkhead Box O3/metabolismo , Microvasos , Proteína Proto-Oncogênica c-fli-1/metabolismo , Esclerodermia Limitada/imunologia , Adulto , Aminoquinolinas/imunologia , Linhagem Celular , Feminino , Humanos , Imiquimode , Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos/imunologia , Poli I-C/imunologia , Proteína Proto-Oncogênica c-fli-1/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Receptores Toll-Like/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
7.
Am J Respir Cell Mol Biol ; 57(1): 121-131, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28248553

RESUMO

Endothelial cell (EC) activation underlies many vascular diseases, including pulmonary arterial hypertension (PAH). Several members of the E-twenty six (ETS) family of transcription factors are important regulators of the gene network governing endothelial homeostasis, and their aberrant expression is associated with pathological angiogenesis. The goal of this study was to determine whether deficiencies of the ETS family member, Friend leukemia integration 1 transcription factor (FLI1), and its closest homolog, ETS-related gene (ERG), are associated with PAH. We found that endothelial ERG was significantly reduced in the lung samples from patients with PAH, as well as in chronically hypoxic mice. Functional studies revealed that depletion of ERG or FLI1 in human pulmonary ECs led to increased expression of inflammatory genes, including IFN genes, whereas genes regulating endothelial homeostasis and cell-cell adhesion were down-regulated. Simultaneous knockdown of both ERG and FLI1 had synergistic or additive effects on the expression of these genes, suggesting that ERG and FLI1 coregulate at least a subset of their target genes. Functionally, knockdown of ERG and FLI1 induced cell monolayer permeability with a potency similar to that of vascular endothelial growth factor. Notably, stimulation of ECs with Toll-like receptor 3 ligand poly(I:C) suppressed ERG expression and induced ERG dissociation from the IFNB1 promoter, while promoting signal transducers and activators of transcription 1 (STAT1) recruitment. Consistent with the up-regulation of inflammatory genes seen in vitro, Erg and Fli1 double-heterozygote mice showed increased immune cell infiltration and expression of cytokines in the lung. In conclusion, loss of ERG and FLI1 might contribute to the pathogenesis of vascular lung complications through the induction of inflammation.


Assuntos
Endotélio Vascular/metabolismo , Homeostase , Pulmão/irrigação sanguínea , Proteínas Oncogênicas/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Regulador Transcricional ERG/metabolismo , Animais , Doença Crônica , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Heterozigoto , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Hipóxia/genética , Hipóxia/patologia , Interferon beta/genética , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/genética , Pneumonia/complicações , Pneumonia/genética , Pneumonia/patologia , Poli I-C/farmacologia , Regiões Promotoras Genéticas/genética , Proteína Proto-Oncogênica c-fli-1/genética , Artéria Pulmonar/patologia , Fator de Transcrição STAT1/metabolismo , Regulador Transcricional ERG/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...