Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 415, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990377

RESUMO

Currently, the main α-amylase family GH13 has been divided into 47 subfamilies in CAZy, with new subfamilies regularly emerging. The present in silico study was performed to highlight the groups, represented by the maltogenic amylase from Thermotoga neapolitana and the α-amylase from Haloarcula japonica, which are worth of creating their own new GH13 subfamilies. This enlarges functional annotation and thus allows more precise prediction of the function of putative proteins. Interestingly, those two share certain sequence features, e.g. the highly conserved cysteine in the second conserved sequence region (CSR-II) directly preceding the catalytic nucleophile, or the well-preserved GQ character of the end of CSR-VII. On the other hand, the two groups bear also specific and highly conserved positions that distinguish them not only from each other but also from representatives of remaining GH13 subfamilies established so far. For the T. neapolitana maltogenic amylase group, it is the stretch of residues at the end of CSR-V highly conserved as L-[DN]. The H. japonica α-amylase group can be characterized by a highly conserved [WY]-[GA] sequence at the end of CSR-II. Other specific sequence features include an almost fully conserved aspartic acid located directly preceding the general acid/base in CSR-III or well-preserved glutamic acid in CSR-IV. The assumption that these two groups represent two mutually related, but simultaneously independent GH13 subfamilies has been supported by phylogenetic analysis as well as by comparison of tertiary structures. The main α-amylase family GH13 has thus been expanded by two novel subfamilies GH13_48 and GH13_49. KEY POINTS: • In silico analysis of two groups of family GH13 members with characterized representatives • Identification of certain common, but also some specific sequence features in seven CSRs • Creation of two novel subfamilies-GH13_48 and GH13_49 within the CAZy database.


Assuntos
Filogenia , alfa-Amilases , alfa-Amilases/genética , alfa-Amilases/metabolismo , alfa-Amilases/química , Sequência de Aminoácidos , Sequência Conservada , Alinhamento de Sequência
2.
Nat Struct Mol Biol ; 31(2): 255-265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177679

RESUMO

Resistant starch is a prebiotic accessed by gut bacteria with specialized amylases and starch-binding proteins. The human gut symbiont Ruminococcus bromii expresses Sas6 (Starch Adherence System member 6), which consists of two starch-specific carbohydrate-binding modules from family 26 (RbCBM26) and family 74 (RbCBM74). Here, we present the crystal structures of Sas6 and of RbCBM74 bound with a double helical dimer of maltodecaose. The RbCBM74 starch-binding groove complements the double helical α-glucan geometry of amylopectin, suggesting that this module selects this feature in starch granules. Isothermal titration calorimetry and native mass spectrometry demonstrate that RbCBM74 recognizes longer single and double helical α-glucans, while RbCBM26 binds short maltooligosaccharides. Bioinformatic analysis supports the conservation of the amylopectin-targeting platform in CBM74s from resistant-starch degrading bacteria. Our results suggest that RbCBM74 and RbCBM26 within Sas6 recognize discrete aspects of the starch granule, providing molecular insight into how this structure is accommodated by gut bacteria.


Assuntos
Glucanos , Amido , Humanos , Amido/química , Amido/metabolismo , Glucanos/química , Glucanos/metabolismo , Amilopectina/metabolismo , Ruminococcus/metabolismo , Bactérias/metabolismo
3.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557873

RESUMO

In the CAZy database, the α-amylase family GH13 has already been divided into 45 subfamilies, with additional subfamilies still emerging. The presented in silico study was undertaken in an effort to propose a novel GH13 subfamily represented by the experimentally characterized cyclomaltodxtrinase from Flavobacterium sp. No. 92. Although most cyclomaltodextrinases have been classified in the subfamily GH13_20. This one has not been assigned any GH13 subfamily as yet. It possesses a non-specified immunoglobulin-like domain at its N-terminus mimicking a starch-binding domain (SBD) and the segment MPDLN in its fifth conserved sequence region (CSR) typical, however, for the subfamily GH13_36. The searches through sequence databases resulted in collecting a group of 108 homologs forming a convincing cluster in the evolutionary tree, well separated from all remaining GH13 subfamilies. The members of the newly proposed subfamily share a few exclusive sequence features, such as the "aromatic" end of the CSR-II consisting of two well-conserved tyrosines with either glycine, serine, or proline in the middle or a glutamic acid succeeding the catalytic proton donor in the CSR-III. Concerning the domain N of the representative cyclomaltodextrinase, docking trials with α-, ß- and γ-cyclodextrins have indicated it may represent a new type of SBD. This new GH13 subfamily has been assigned the number GH13_46.


Assuntos
Flavobacterium , alfa-Amilases , alfa-Amilases/metabolismo , Flavobacterium/genética , Flavobacterium/metabolismo , Sequência de Aminoácidos , Glicosídeo Hidrolases/metabolismo , Filogenia
4.
3 Biotech ; 11(5): 229, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968573

RESUMO

The family GH77 contains 4-α-glucanotransferase acting on α-1,4-glucans, known as amylomaltase in prokaryotes and disproportionating enzyme in plants. A group of bacterial GH77 members, represented by amylomaltases from Escherichia coli and Corynebacterium glutamicum, possesses an N-terminal extension that forms a distinct immunoglobulin-like fold domain, of which no function has been identified. Here, in silico analysis of 100 selected sequences of N-terminal domain homologues disclosed several well-conserved residues, among which Tyr108 (E. coli amylomaltase numbering) may be involved in α-glucan binding. These N-terminal domains, therefore, may represent a new type of starch-binding domain and define a new CBM family. This hypothesis is supported by docking of maltooligosaccharides to the N-terminal domain in amylomaltases, representing the four clusters of the phylogenetic tree. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02787-8.

5.
Biotechnol Adv ; 37(8): 107451, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31536775

RESUMO

The term "starch-binding domain" (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a ß-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the ß-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.


Assuntos
Amido/química , Sítios de Ligação , Domínio Catalítico , Ligantes , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...