Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Vet Res ; 53(1): 63, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927724

RESUMO

Foot-and-mouth disease (FMD) is one of the most important livestock diseases restricting international trade. While African buffalo (Syncerus caffer) act as the main wildlife reservoir, viral and immune response dynamics during FMD virus acute infection have not been described before in this species. We used experimental needle inoculation and contact infections with three Southern African Territories serotypes to assess clinical, virological and immunological dynamics for thirty days post infection. Clinical FMD in the needle inoculated buffalo was mild and characterised by pyrexia. Despite the absence of generalised vesicles, all contact animals were readily infected with their respective serotypes within the first two to nine days after being mixed with needle challenged buffalo. Irrespective of the route of infection or serotype, there were positive associations between the viral loads in blood and the induction of host innate pro-inflammatory cytokines and acute phase proteins. Viral loads in blood and tonsil swabs were tightly correlated during the acute phase of the infection, however, viraemia significantly declined after a peak at four days post-infection (dpi), which correlated with the presence of detectable neutralising antibodies. In contrast, infectious virus was isolated in the tonsil swabs until the last sampling point (30 dpi) in most animals. The pattern of virus detection in serum and tonsil swabs was similar for all three serotypes in the direct challenged and contact challenged animals. We have demonstrated for the first time that African buffalo are indeed systemically affected by FMD virus and clinical FMD in buffalo is characterized by a transient pyrexia. Despite the lack of FMD lesions, infection of African buffalo was characterised by high viral loads in blood and oropharynx, rapid and strong host innate and adaptive immune responses and high transmissibility.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Anticorpos Antivirais , Búfalos , Comércio , Febre/veterinária , Vírus da Febre Aftosa/fisiologia , Imunidade , Internacionalidade
2.
Vaccines (Basel) ; 9(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34579233

RESUMO

The effective control of foot-and-mouth disease (FMD) relies strongly on the separation of susceptible and infected livestock or susceptible livestock and persistently infected wildlife, vaccination, and veterinary sanitary measures. Vaccines affording protection against multiple serotypes for longer than six months and that are less reliant on the cold chain during handling are urgently needed for the effective control of FMD in endemic regions. Although much effort has been devoted to improving the immune responses elicited through the use of modern adjuvants, their efficacy is dependent on the formulation recipe, target species and administration route. Here we compared and evaluated the efficacy of two adjuvant formulations in combination with a structurally stabilized SAT2 vaccine antigen, designed to have improved thermostability, antigen shelf-life and longevity of antibody response. Protection mediated by the Montanide ISA 206B-adjuvanted or Quil-A Saponin-adjuvanted SAT2 vaccines were comparable. The Montanide ISA 206B-adjuvanted vaccine elicited a higher SAT2 neutralizing antibody response and three times higher levels of systemic IFN-γ responses at 14- and 28-days post-vaccination (dpv) were observed compared to the Quil-A Saponin-adjuvanted vaccine group. Interestingly, serum antibodies from the immunized animals reacted similarly to the parental vaccine virus and viruses containing mutations in the VP2 protein that simulate antigenic drift in nature.

3.
Virus Evol ; 7(1): veab009, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35186323

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious animal disease caused by an RNA virus subdivided into seven serotypes that are unevenly distributed in Asia, Africa, and South America. Despite the challenges of controlling FMD, since 1996 there have been only two outbreaks attributed to serotype C, in Brazil and in Kenya, in 2004. This article describes the historical distribution and origins of serotype C and its disappearance. The serotype was first described in Europe in the 1920s, where it mainly affected pigs and cattle but as a less common cause of outbreaks than serotypes O and A. No serotype C outbreaks have been reported in Europe since vaccination stopped in 1990. FMD virus is presumed to have been introduced into South America from Europe in the nineteenth century, although whether serotype C evolved there or in Europe is not known. As in Europe, this serotype was less widely distributed and caused fewer outbreaks than serotypes O and A. Since 1994, serotype C had not been reported from South America until four small outbreaks were detected in the Amazon region in 2004. Elsewhere, serotype C was introduced to Asia, in the 1950s to the 1970s, persisting and evolving for several decades in the Indian subcontinent and for eighteen years in the Philippines. Serotype C virus also circulated in East Africa between 1957 and 2004. Many serotype C viruses from European and Kenyan outbreaks were closely related to vaccine strains, including the most recently recovered Kenyan isolate from 2004. International surveillance has not confirmed any serotype C cases, worldwide, for over 15 years, despite more than 2,000 clinical submissions per year to reference laboratories. Serology provides limited evidence for absence of this serotype, as unequivocal interpretation is hampered by incomplete intra-serotype specificity of immunoassays and the continued use of this serotype in vaccines. It is recommended to continue strengthening surveillance in regions of FMD endemicity, to stop vaccination against serotype C and to reduce working with the virus in laboratories, since inadvertent escape of virus during such activities is now the biggest risk for its reappearance in the field.

4.
Front Vet Sci ; 7: 568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102544

RESUMO

Foot-and-mouth disease (FMD) continues to be a major burden for livestock owners in endemic countries and a continuous threat to FMD-free countries. The epidemiology and control of FMD in Africa is complicated by the presence of five clinically indistinguishable serotypes. Of these the Southern African Territories (SAT) type 3 has received limited attention, likely due to its restricted distribution and it being less frequently detected. We investigated the intratypic genetic variation of the complete P1 capsid-coding region of 22 SAT3 viruses and confirmed the geographical distribution of five of the six SAT3 topotypes. The antigenic cross-reactivity of 12 SAT3 viruses against reference antisera was assessed by performing virus neutralization assays and calculating the r1-values, which is a ratio of the heterologous neutralizing titer to the homologous neutralizing titer. Interestingly, cross-reactivity between the SAT3 reference antisera and many SAT3 viruses was notably high (r1-values >0.3). Moreover, some of the SAT3 viruses reacted more strongly to the reference sera compared to the homologous virus (r1-values >1). An increase in the avidity of the reference antisera to the heterologous viruses could explain some of the higher neutralization titers observed. Subsequently, we used the antigenic variability data and corresponding genetic and structural data to predict naturally occurring amino acid positions that correlate with antigenic changes. We identified four unique residues within the VP1, VP2, and VP3 proteins, associated with a change in cross-reactivity, with two sites that change simultaneously. The analysis of antigenic variation in the context of sequence differences is critical for both surveillance-informed selection of effective vaccines and the rational design of vaccine antigens tailored for specific geographic localities, using reverse genetics.

5.
PLoS Pathog ; 16(9): e1008828, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991636

RESUMO

Field isolates of foot-and-mouth disease viruses (FMDVs) utilize integrin-mediated cell entry but many, including Southern African Territories (SAT) viruses, are difficult to adapt to BHK-21 cells, thus hampering large-scale propagation of vaccine antigen. However, FMDVs acquire the ability to bind to cell surface heparan sulphate proteoglycans, following serial cytolytic infections in cell culture, likely by the selection of rapidly replicating FMDV variants. In this study, fourteen SAT1 and SAT2 viruses, serially passaged in BHK-21 cells, were virulent in CHO-K1 cells and displayed enhanced affinity for heparan, as opposed to their low-passage counterparts. Comparative sequence analysis revealed the fixation of positively charged residues clustered close to the icosahedral 5-fold axes of the virus, at amino acid positions 83-85 in the ßD-ßE loop and 110-112 in the ßF-ßG loop of VP1 upon adaptation to cultured cells. Molecular docking simulations confirmed enhanced binding of heparan sulphate to a model of the adapted SAT1 virus, with the region around VP1 arginine 112 contributing the most to binding. Using this information, eight chimeric field strain mutant viruses were constructed with additional positive charges in repeated clusters on the virion surface. Five of these bound heparan sulphate with expanded cell tropism, which should facilitate large-scale propagation. However, only positively charged residues at position 110-112 of VP1 enhanced infectivity of BHK-21 cells. The symmetrical arrangement of even a single amino acid residue in the FMD virion is a powerful strategy enabling the virus to generate novel receptor binding and alternative host-cell interactions.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , Modelos Moleculares , Vírion/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Cricetinae , Heparitina Sulfato/metabolismo , Simulação de Acoplamento Molecular/métodos , Receptores Virais/metabolismo
6.
Vet Microbiol ; 243: 108614, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273026

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed animals, which severely decreases livestock productivity. FMD virus (FMDV), the causative agent, initiates infection by interaction with integrin cellular receptors on pharyngeal epithelium cells, causing clinical signs one to four days after transmission to a susceptible host. However, some Southern African Territories (SAT) viruses have been reported to cause mild or subclinical infections that may go undiagnosed in field conditions and are likely to be more common than previously expected. The studies presented here demonstrate that not all SAT2 viruses are equally virulent in cattle. The two SAT2 viruses, ZIM/5/83 and ZIM/7/83, were both highly attenuated in cattle, as evidenced by the mild clinical signs observed after needle challenge, while two incongruent SAT2 viruses showed significantly different clinical signs in challenged cattle. We then explored the ability of the SAT2 viruses to infect different cell types with defined receptors that are utilised by FMDV and found differences in their ability to lyse cells in culture and to compete in a controlled cell culture environment. The population sequence variation between ZIM/5/83 and ZIM/7/83 revealed multiple sites of single nucleotide variants of low frequency between the predominant virus populations, as could be expected from the genome of an RNA virus. An assessment of the biophysical stability of SAT2 virions during acidification indicated that the SAT2 virus EGY/09/12 was more resilient to acidification than the ZIM/5/83 and ZIM/7/83 viruses; however, whether this difference relates to differences in virulence in vivo is unclear. This study is a consolidated view of the key findings of SAT2 viruses studied over a 14-year period involving many different experiments.


Assuntos
Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/virologia , Variação Genética , Fenótipo , África Austral , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/virologia , Linhagem Celular , Cricetinae , Vírus da Febre Aftosa/classificação , Aptidão Genética , Concentração de Íons de Hidrogênio , Gado/virologia , Polimorfismo de Nucleotídeo Único , Sorogrupo , Temperatura
7.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092573

RESUMO

African buffaloes (Syncerus caffer) are the principal "carrier" hosts of foot-and-mouth disease virus (FMDV). Currently, the epithelia and lymphoid germinal centers of the oropharynx have been identified as sites for FMDV persistence. We carried out studies in FMDV SAT1 persistently infected buffaloes to characterize the diversity of viruses in oropharyngeal epithelia, germinal centers, probang samples (oropharyngeal scrapings), and tonsil swabs to determine if sufficient virus variation is generated during persistence for immune escape. Most sequencing reads of the VP1 coding region of the SAT1 virus inoculum clustered around 2 subpopulations differing by 22 single-nucleotide variants of intermediate frequency. Similarly, most sequences from oropharynx tissue clustered into two subpopulations, albeit with different proportions, depending on the day postinfection (dpi). There was a significant difference between the populations of viruses in the inoculum and in lymphoid tissue taken at 35 dpi. Thereafter, until 400 dpi, no significant variation was detected in the viral populations in samples from individual animals, germinal centers, and epithelial tissues. Deep sequencing of virus from probang or tonsil swab samples harvested prior to postmortem showed less within-sample variability of VP1 than that of tissue sample sequences analyzed at the same time. Importantly, there was no significant difference in the ability of sera collected between 14 and 400 dpi to neutralize the inoculum or viruses isolated at later time points in the study from the same animal. Therefore, based on this study, there is no evidence of escape from antibody neutralization contributing to FMDV persistent infection in African buffalo.IMPORTANCE Foot-and-mouth disease virus (FMDV) is a highly contagious virus of cloven-hoofed animals and is recognized as the most important constraint to international trade in animals and animal products. African buffaloes (Syncerus caffer) are efficient carriers of FMDV, and it has been proposed that new virus variants are produced in buffalo during the prolonged carriage after acute infection, which may spread to cause disease in livestock populations. Here, we show that despite an accumulation of low-frequency sequence variants over time, there is no evidence of significant antigenic variation leading to immune escape. Therefore, carrier buffalo are unlikely to be a major source of new virus variants.


Assuntos
Búfalos , Portador Sadio/veterinária , Evolução Molecular , Vírus da Febre Aftosa/crescimento & desenvolvimento , Febre Aftosa/imunologia , Febre Aftosa/virologia , Evasão da Resposta Imune , Animais , Proteínas do Capsídeo/genética , Portador Sadio/imunologia , Portador Sadio/virologia , Epitélio/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Instabilidade Genômica , Centro Germinativo/virologia , Mutação , Orofaringe/virologia , Análise de Sequência de DNA
8.
Transbound Emerg Dis ; 66(5): 2011-2024, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31127983

RESUMO

Here, we report the results of a cross-sectional study designed to monitor the circulation and genetic diversity of foot and mouth disease virus (FMDV) in Uganda between 2014 and 2017. In this study, 13,614 sera and 2,068 oral-pharyngeal fluid samples were collected from cattle and analysed to determine FMDV seroprevalence, circulating serotypes and their phylogenetic relationships. Circulation of FMDV was evidenced by the detection of antibodies against non-structural proteins of FMDV or viral isolations in all districts sampled in Uganda. Sequence analysis revealed the presence of FMDV serotypes A, O, SAT 1 and SAT 2. FMDVs belonging to serotype O, isolated from 21 districts, were the most prevalent and were classified into six lineages within two East African topotypes, namely EA-1 and EA-2. Serotype A viruses belonging to the Africa G-I topotype were isolated from two districts. SAT 1 viruses grouped within topotypes I and IV and SAT 2 viruses within topotypes VII, IV and X were isolated from six and four districts respectively. Phylogenetic analysis of SAT 1 and SAT 2 sequences from cattle clustered with historical sequences from African buffalo, indicating possible interspecies transmission at the wildlife-livestock interface. In some cases, Uganda viruses also shared similarities to viral strains recovered from other regions in East Africa. This 3-year study period provides knowledge about the geographical distribution of FMDV serotypes isolated in Uganda and insights into the genetic diversity of the multiple serotypes circulating in the country. Knowledge of circulating FMDV viruses will assist in antigenic matching studies to devise improved FMDV control strategies with vaccination and vaccine strain selection for Uganda.


Assuntos
Doenças dos Bovinos/epidemiologia , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Filogenia , Sorogrupo , Animais , Animais Selvagens/virologia , Búfalos/virologia , Bovinos , Estudos Transversais , Febre Aftosa/transmissão , Gado/virologia , Estudos Soroepidemiológicos , Uganda/epidemiologia
9.
Virus Res ; 264: 45-55, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30807778

RESUMO

Foot-and-mouth disease (FMD) virus (FMDV) isolates show variation in their ability to withstand an increase in temperature. The FMDV is surprisingly thermolabile, even though this virus is probably subjected to a strong extracellular selective pressure by heat in hot climate regions where FMD is prevalent. The three SAT serotypes, with their particularly low biophysical stability also only yield vaccines of low protective capacity, even with multiple booster vaccinations. The aim of the study was to determine the inherent biophysical stability of field SAT isolates. To characterise the biophysical stability of 20 SAT viruses from Southern Africa, the thermofluor assay was used to monitor capsid dissociation by the release of the RNA genome under a range of temperature, pH and ionic conditions. The SAT2 and SAT3 viruses had a similar range of thermostability of 48-54 °C. However, the SAT1 viruses had a wider range of thermostability with an 8 °C difference but with many viruses being unstable at 43-46 °C. The thermostable A-serotype A24 control virus had the highest thermostability of 55 °C with some SAT2 and SAT3 viruses of similar thermostability. There was a 10 °C difference between the most unstable SAT virus (SAT1/TAN/2/99) and the highly stable A24 control virus. SAT1 viruses were generally more stable compared to SAT2 and SAT3 viruses at the pH range of 6.7-9.1. The effect of ionic buffers on capsid stability showed that SAT1 and SAT2 viruses had an increased stability of 2-9 °C and 2-6 °C, respectively, with the addition of 1 M NaCl. This is in contrast to the SAT3 viruses, which did not show improved stabilisation after addition of 1 M or 0.5 M NaCl buffers. Some buffers showed differing results dependent on the virus tested, highlighting the need to test SAT viruses with different solutions to establish the most stabilising option for storage of each virus. This study confirms for the first time that more stable SAT field viruses are present in the southern Africa region. This could facilitate the selection of the most stable circulating field strains, for adaptation to cultured BHK-21 cells or manipulation by reverse genetics and targeted mutation to produce improved vaccine master seed viruses.


Assuntos
Capsídeo/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Temperatura Alta , Animais , Proteínas do Capsídeo/genética , Clima , Febre Aftosa/virologia , Genoma Viral , Instabilidade Genômica , Concentração de Íons de Hidrogênio , Estabilidade de RNA , RNA Viral/genética
10.
Nat Ecol Evol ; 2(9): 1449-1457, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082738

RESUMO

Livestock production in Africa is key to national economies, food security and rural livelihoods, and > 85% of livestock keepers live in extreme poverty. With poverty elimination central to the Sustainable Development Goals, livestock keepers are therefore critically important. Foot-and-mouth disease is a highly contagious livestock disease widespread in Africa that contributes to this poverty. Despite its US$2.3 billion impact, control of the disease is not prioritized: standard vaccination regimens are too costly, its impact on the poorest is underestimated, and its epidemiology is too weakly understood. Our integrated analysis in Tanzania shows that the disease is of high concern, reduces household budgets for human health, and has major impacts on milk production and draft power for crop production. Critically, foot-and-mouth disease outbreaks in cattle are driven by livestock-related factors with a pattern of changing serotype dominance over time. Contrary to findings in southern Africa, we find no evidence of frequent infection from wildlife, with outbreaks in cattle sweeping slowly across the region through a sequence of dominant serotypes. This regularity suggests that timely identification of the epidemic serotype could allow proactive vaccination ahead of the wave of infection, mitigating impacts, and our preliminary matching work has identified potential vaccine candidates. This strategy is more realistic than wildlife-livestock separation or conventional foot-and-mouth disease vaccination approaches. Overall, we provide strong evidence for the feasibility of coordinated foot-and-mouth disease control as part of livestock development policies in eastern Africa, and our integrated socioeconomic, epidemiological, laboratory and modelling approach provides a framework for the study of other disease systems.


Assuntos
Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Vacinação , Animais , Búfalos , Bovinos , Surtos de Doenças , Cabras , Estudos Soroepidemiológicos , Ovinos , Tanzânia/epidemiologia
11.
Vaccine ; 35(40): 5426-5433, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28431813

RESUMO

Foot-and-mouth disease (FMD) vaccines with improved stability and less reliant on a cold-chain are needed to improve the longevity of immune responses elicited in animals. This is especially so for serotypes O and SAT2 which are unstable in mildly acidic pH conditions or at elevated temperatures leading to dissociation of the capsid (146S particle) and loss of immunogenicity. Previously, stabilised SAT2 viruses were generated by reverse genetic approaches and assessed in vitro and in vivo with a guinea pig trial. Here we investigated the efficacy and comparative immunological responses of two thermostable and wild-type SAT2 vaccines over 5months followed by challenge. We assessed humoral immune responses elicited in cattle in terms of total and neutralizing antibodies and IgG1/2 isotyping; and cell-mediated responses of IFN-γ as in vitro markers of protection. Whilst there were significant differences in total and neutralizing antibodies for the vSAT2-93H group compared to other vaccinated groups after the first vaccination, there were no significant differences after the second immunization. Following intra-dermolingual challenge all vaccinated groups were fully protected as determined by the absence of generalized lesions. These results provide proof that two vaccine doses, consisting of SAT2 antigen combined with ISA206B adjuvant, administered 4-6 weeks apart were able to protect animals up to 5months pv. Additionally, vSAT2-93Y had significantly higher levels of IFN-γ after challenge and had a lower clinical score indicative of better protection compared to other vaccinated groups and the importance of cell mediated responses and antigen stability in protection.


Assuntos
Sistema A de Transporte de Aminoácidos/imunologia , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Bovinos , Febre Aftosa/imunologia , Vírus da Febre Aftosa/imunologia , Testes de Neutralização , Vacinas Virais/imunologia , Vacinas Virais/uso terapêutico
12.
Virus Res ; 232: 152-161, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28267609

RESUMO

African horse sickness virus (AHSV) and bluetongue virus (BTV) are arboviruses of the genus Orbivirus that are transmitted to their vertebrate hosts by Culicoides biting midges. These orbiviruses exhibit lytic infection (apoptosis) in mammalian cells, but cause persistent infection with no cytopathic effects in Culicoides sonorensis cells. Although regulation of apoptosis could thus be integral for establishing persistent virus infection in midge cells, nothing is known about the presence and function of apoptosis pathways in Culicoides midges and their derived cell lines. Here, we report the cloning and functional characterization of an inhibitor of apoptosis protein (IAP), designated CsIAP1, from C. sonorensis cells. The CsIAP1 protein contains two baculoviral IAP repeat (BIR) domains and a RING domain. Silencing of the Cs iap1 gene in C. sonorensis cells caused apoptosis, indicating that CsIAP1 plays a role in cell survival. Stable expression of the CsIAP1 protein in BSR mammalian cells suppressed apoptosis induced by AHSV-4 and BTV-10 infection, and biochemical data indicated that CsIAP1 is an inhibitor of mammalian caspase-9, an initiator caspase in the intrinsic apoptotic pathway. Mutagenesis studies indicated that the BIR2 and RING domains are required for the anti-apoptotic activity of CsIAP1. The results suggest that the mechanism by which CsIAP1 suppresses apoptosis in insect cells may involve inhibition of a Culicoides caspase-9 homologue through a mechanism that requires both the BIR2 and RING domains. This study provides the first evidence that the CsIAP1 protein is a key negative regulator of apoptosis in C. sonorensis cells.


Assuntos
Ceratopogonidae/genética , Interações Hospedeiro-Patógeno , Proteínas Inibidoras de Apoptose/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/crescimento & desenvolvimento , Animais , Apoptose/genética , Vírus Bluetongue/genética , Vírus Bluetongue/crescimento & desenvolvimento , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular , Ceratopogonidae/metabolismo , Ceratopogonidae/virologia , Regulação da Expressão Gênica , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Insetos Vetores/virologia , Domínios Proteicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ovinos , Transdução de Sinais
13.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298597

RESUMO

Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines.IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for the potential use of such mutants in improving the stability of SAT2 vaccines in countries where FMD is endemic, which rely heavily on the maintenance of the cold chain, with potential improvement to the duration of immune responses.


Assuntos
Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/fisiologia , Vacinas Virais/genética , Substituição de Aminoácidos , Animais , Vírus da Febre Aftosa/imunologia , Instabilidade Genômica , Concentração de Íons de Hidrogênio , Imunogenicidade da Vacina , Íons , Cinética , Mutação , Sorogrupo , Cloreto de Sódio/farmacologia , Temperatura , Potência de Vacina , Vacinas Virais/química
14.
Virology ; 497: 217-232, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27497184

RESUMO

Cellular pathways involved in cell entry by African horse sickness virus (AHSV), a member of the Orbivirus genus within the Reoviridae family, have not yet been determined. Here, we show that acidic pH is required for productive infection of BSR cells by AHSV-4, suggesting that the virus is likely internalized by an endocytic pathway. We subsequently analyzed the major endocytic routes using specific inhibitors and determined the consequences for AHSV-4 entry into BSR cells. The results indicated that virus entry is dynamin dependent, but clathrin- and lipid raft/caveolae-mediated endocytic pathways were not used by AHSV-4 to enter and infect BSR cells. Instead, binding of AHSV-4 to BSR cells stimulated uptake of a macropinocytosis-specific cargo and inhibition of Na(+)/H(+) exchangers, actin polymerization and cellular GTPases and kinases involved in macropinocytosis significantly inhibited AHSV-4 infection. Altogether, the data suggest that AHSV-4 infects BSR cells by utilizing macropinocytosis as the primary entry pathway.


Assuntos
Vírus da Doença Equina Africana/fisiologia , Doença Equina Africana/virologia , Endocitose , Internalização do Vírus , Actinas/metabolismo , Vírus da Doença Equina Africana/ultraestrutura , Animais , Linhagem Celular , Colesterol , Cricetinae , Dinaminas/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Concentração de Íons de Hidrogênio
15.
PLoS One ; 11(7): e0159360, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27448206

RESUMO

Quantifying and predicting the antigenic characteristics of a virus is something of a holy grail for infectious disease research because of its central importance to the emergence of new strains, the severity of outbreaks, and vaccine selection. However, these characteristics are defined by a complex interplay of viral and host factors so that phylogenetic measures of viral similarity are often poorly correlated to antigenic relationships. Here, we generate antigenic phylogenies that track the phenotypic evolution of two serotypes of foot-and-mouth disease virus by combining host serology and viral sequence data to identify sites that are critical to their antigenic evolution. For serotype SAT1, we validate our antigenic phylogeny against monoclonal antibody escape mutants, which match all of the predicted antigenic sites. For serotype O, we validate it against known sites where available, and otherwise directly evaluate the impact on antigenic phenotype of substitutions in predicted sites using reverse genetics and serology. We also highlight a critical and poorly understood problem for vaccine selection by revealing qualitative differences between assays that are often used interchangeably to determine antigenic match between field viruses and vaccine strains. Our approach provides a tool to identify naturally occurring antigenic substitutions, allowing us to track the genetic diversification and associated antigenic evolution of the virus. Despite the hugely important role vaccines have played in enhancing human and animal health, vaccinology remains a conspicuously empirical science. This study advances the field by providing guidance for tuning vaccine strains via site-directed mutagenesis through this high-resolution tracking of antigenic evolution of the virus between rare major shifts in phenotype.


Assuntos
Antígenos Virais/imunologia , Vírus da Febre Aftosa/imunologia , Animais , Bovinos , Linhagem Celular , Cricetinae , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Evolução Molecular , Vírus da Febre Aftosa/genética , Cabras , Mutagênese , Testes de Neutralização , Filogenia , Sorotipagem , Suínos
16.
Front Microbiol ; 7: 528, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148217

RESUMO

Over a decade ago, foot-and-mouth disease (FMD) re-emerged in Southern Africa specifically in beef exporting countries that had successfully maintained disease-free areas in the past. FMD virus (FMDV) serotype SAT2 has been responsible for a majority of these outbreaks. Epidemiological studies have revealed the importance of the African buffalo as the major wildlife FMD reservoir in the region. We used phylogeographic analysis to study dynamics of FMD transmission between buffalo and domestic cattle at the interface of the major wildlife protected areas in the region currently encompassing two largest Transfrontier conservation areas: Kavango-Zambezi (KAZA) and Great Limpopo (GL). Results of this study showed restricted local occurrence of each FMDV SAT2 topotypes I, II, and III, with occasional virus migration from KAZA to GL. Origins of outbreaks in livestock are frequently attributed to wild buffalo, but our results suggest that transmission from cattle to buffalo also occurs. We used coalescent Bayesian skyline analysis to study the genetic variation of the virus in cattle and buffalo, and discussed the association of these genetic changes in the virus and relevant epidemiological events that occurred in this area. Our results show that the genetic diversity of FMDV SAT2 has decreased in buffalo and cattle population during the last decade. This study contributes to understand the major dynamics of transmission and genetic variation of FMDV SAT2 in Southern Africa, which will could ultimately help in designing efficient strategies for the control of FMD at a local and regional level.

17.
PeerJ ; 4: e1964, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168976

RESUMO

The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3C(pro)). As in other picornaviruses, 3C(pro) performs most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3C(pro) from serotype A-one of the seven serotypes of FMDV-adopts a trypsin-like fold. On the basis of capsid sequence comparisons the FMDV serotypes are grouped into two phylogenetic clusters, with O, A, C, and Asia 1 in one, and the three Southern African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another, a grouping pattern that is broadly, but not rigidly, reflected in 3C(pro) amino acid sequences. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2 Å resolution of 3C(pro) from SAT2/GHA/8/91.

18.
Virus Res ; 213: 184-194, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26686484

RESUMO

As a means to develop African horse sickness (AHS) vaccines that are safe and DIVA compliant, we investigated the synthesis of empty African horse sickness virus (AHSV) particles. The emphasis of this study was on the assembly of the major viral core (VP3 and VP7) and outer capsid proteins (VP2 and VP5) into architecturally complex, heteromultimeric nanosized particles. The production of fully assembled core-like particles (CLPs) was accomplished in vivo by baculovirus-mediated co-synthesis of VP3 and VP7. The two different outer capsid proteins were capable of associating independently of each other with preformed cores to yield partial virus-like particles (VLPs). Complete VLPs were synthesized, albeit with a low yield. Crystalline formation of AHSV VP7 trimers is thought to impede high-level CLP production. Consequently, we engineered and co-synthesized VP3 with a more hydrophilic mutant VP7, resulting in an increase in the turnover of CLPs.


Assuntos
Vírus da Doença Equina Africana/genética , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Virossomos/isolamento & purificação , Virossomos/metabolismo , Baculoviridae , Vetores Genéticos , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Virossomos/genética
19.
Nat Struct Mol Biol ; 22(10): 788-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26389739

RESUMO

Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.


Assuntos
Proteínas do Capsídeo/química , Vírus da Febre Aftosa/química , Febre Aftosa/prevenção & controle , Modelos Moleculares , Vacinas Virais/química , Animais , Anticorpos Neutralizantes/sangue , Sequência de Bases , Proteínas do Capsídeo/metabolismo , Biologia Computacional/métodos , Microscopia Crioeletrônica , Cristalografia por Raios X , Desenho de Fármacos , Ensaio de Imunoadsorção Enzimática , Febre Aftosa/imunologia , Vírus da Febre Aftosa/imunologia , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vacinas Virais/imunologia
20.
Vaccine ; 33(25): 2909-16, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25930116

RESUMO

The genetic diversity of the three Southern African Territories (SAT) types of foot-and-mouth disease virus (FMDV) reflects high antigenic variation, and indications are that vaccines targeting each SAT-specific topotype may be needed. This has serious implications for control of FMD using vaccines as well as the choice of strains to include in regional antigen banks. Here, we investigated an intra-serotype chimeric virus, vSAT2(ZIM14)-SAT2, which was engineered by replacing the surface-exposed capsid-coding region (1B-1D/2A) of a SAT2 genome-length clone, pSAT2, with that of the field isolate, SAT2/ZIM/14/90. The chimeric FMDV produced by this technique was viable, grew to high titres and stably maintained the 1B-1D/2A sequence upon passage. Chemically inactivated, oil adjuvanted vaccines of both the chimeric and parental immunogens were used to vaccinate cattle. The serological response to vaccination showed the production of strong neutralizing antibody titres that correlated with protection against homologous FMDV challenge. We also predicted a good likelihood that cattle vaccinated with an intra-serotype chimeric vaccine would be protected against challenge with viruses that caused recent outbreaks in southern Africa. These results provide support that chimeric vaccines containing the external capsid of field isolates induce protective immune responses in FMD host species similar to the parental vaccine.


Assuntos
Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais , Adjuvantes Imunológicos , África Austral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Variação Antigênica , Bovinos , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Testes de Neutralização , Sorogrupo , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...