Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 183: 107779, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019420

RESUMO

The African continent was subjected to periodic climatic shifts during the Pliocene and Pleistocene. These habitat changes greatly affected the evolutionary processes and tempo of diversification in numerous, widely distributed mammals. The Otomyini (Family Muridae) comprises three African rodent genera, Parotomys, Otomys and Myotomys, characterized by unique laminated-shaped molars. Species within this tribe generally prefer open-habitat and show low dispersal capabilities, with previous studies suggesting that their diversification was closely associated with climatic oscillations over the last four million years. Our phylogenetic reconstructions, based on three mitochondrial (mtDNA) genes (Cytb, COI and 12S) and four nuclear introns (EF, SPTBN, MGF and THY), identified eight major genetic clades that are distributed across southern, eastern and western Africa. Our data permit the re-examination of the taxonomic status of the three genera as well as the previously proposed mesic-arid dichotomy of the 10 South African species. Moreover, multiple mtDNA species delimitation methods incorporating 168 specimens estimated the number of Otomyini species to be substantially higher than the âˆ¼ 30 recognized, suggesting that the current taxonomy will necessitate an integrative approach to delimit extant species diversity within the Otomyini. The data suggests that the origin of the tribe can be dated back to âˆ¼ 5.7 million years ago (Ma) in southern Africa. The distribution and phylogenetic associations among the eight major otomyine evolutionary lineages can best be explained by several waves of northward colonization from southern Africa, complemented by independent reversed dispersals from eastern back to southern Africa at different time periods. There is strong support for the hypothesis that the radiation, dispersion, and diversification of the otomyine rodents is closely linked to recent Plio-Pleistocene climatic oscillations.


Assuntos
Evolução Biológica , Ecossistema , Ratos , Animais , Filogenia , Murinae/genética , DNA Mitocondrial/genética
2.
PLoS One ; 10(12): e0144995, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26683828

RESUMO

The Greater Maputaland-Pondoland-Albany (GMPA) region of southern Africa was recently designated as a centre of vertebrate endemism. The phylogeography of the vertebrate taxa occupying this region may provide insights into the evolution of faunal endemism in south-eastern Africa. Here we investigate the phylogeographic patterns of an understudied small mammal species assemblage (Amblysomus) endemic to the GMPA, to test for cryptic diversity within the genus, and to better understand diversification across the region. We sampled specimens from 50 sites across the distributional range of Amblysomus, with emphasis on the widespread A. hottentotus, to analyse geographic patterns of genetic diversity using mitochondrial DNA (mtDNA) and nuclear intron data. Molecular dating was used to elucidate the evolutionary and phylogeographic history of Amblysomus. Our phylogenetic reconstructions show that A. hottentotus comprises several distinct lineages, or evolutionarily significant units (ESUs), some with restricted geographic ranges and thus worthy of conservation attention. Divergence of the major lineages dated to the early Pliocene, with later radiations in the GMPA during the late-Pliocene to early-Pleistocene. Evolutionary diversification within Amblysomus may have been driven by uplift of the Great Escarpment c. 5-3 million years ago (Ma), habitat changes associated with intensification of the east-west rainfall gradient across South Africa and the influence of subsequent global climatic cycles. These drivers possibly facilitated geographic spread of ancestral lineages, local adaptation and vicariant isolation. Our study adds to growing empirical evidence identifying East and southern Africa as cradles of vertebrate diversity.


Assuntos
DNA Mitocondrial/análise , Mitocôndrias/genética , Toupeiras/classificação , Toupeiras/genética , África Oriental , África Austral , Animais , Evolução Biológica , Variação Genética , Dados de Sequência Molecular , Filogenia , Filogeografia
3.
BMC Evol Biol ; 10: 69, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20214773

RESUMO

BACKGROUND: Golden moles (Chrysochloridae) are small, subterranean, afrotherian mammals from South Africa and neighboring regions. Of the 21 species now recognized, some (e.g., Chrysochloris asiatica, Amblysomus hottentotus) are relatively common, whereas others (e.g., species of Chrysospalax, Cryptochloris, Neamblysomus) are rare and endangered. Here, we use a combined analysis of partial sequences of the nuclear GHR gene and morphological characters to derive a phylogeny of species in the family Chrysochloridae. RESULTS: Although not all nodes of the combined analysis have high support values, the overall pattern of relationships obtained from different methods of phylogeny reconstruction allow us to make several recommendations regarding the current taxonomy of golden moles. We elevate Huetia to generic status to include the species leucorhinus and confirm the use of the Linnean binomial Carpitalpa arendsi, which belongs within Amblysominae along with Amblysomus and Neamblysomus. A second group, Chrysochlorinae, includes Chrysochloris, Cryptochloris, Huetia, Eremitalpa, Chrysospalax, and Calcochloris. Bayesian methods make chrysochlorines paraphyletic by placing the root within them, coinciding with root positions favored by a majority of randomly-generated outgroup taxa. Maximum Parsimony (MP) places the root either between chrysochlorines and amblysomines (with Chlorotalpa as sister taxon to amblysomines), or at Chlorotalpa, with the former two groups reconstructed as monophyletic in all optimal MP trees. CONCLUSIONS: The inclusion of additional genetic loci for this clade is important to confirm our taxonomic results and resolve the chrysochlorid root. Nevertheless, our optimal topologies support a division of chrysochlorids into amblysomines and chrysochlorines, with Chlorotalpa intermediate between the two. Furthermore, evolution of the chrysochlorid malleus exhibits homoplasy. The elongate malleus has evolved just once in the Cryptochloris-Chrysochloris group; other changes in shape have occurred at multiple nodes, regardless of how the root is resolved.


Assuntos
Evolução Molecular , Toupeiras/genética , Filogenia , Animais , Teorema de Bayes , Toupeiras/anatomia & histologia , Toupeiras/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...