Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38727388

RESUMO

The reversibility of the covalent interaction between boronic acids and 1,2- or 1,3-diols has put the spotlight on this reaction for its potential in the development of sensors and for the fishing of bioactive glycoconjugates. In this work, we describe the investigation of this reaction for the reversible functionalization of the surface of CdSe/ZnS Quantum Rods (QRs). With this in mind, we have designed a turn-off Förster resonance energy transfer (FRET) system that ensures monitoring the extent of the reaction between the phenyl boronic residue at the meso position of a BODIPY probe and the solvent-exposed 1,2-diols on QRs' surface. The reversibility of the corresponding boronate ester under oxidant conditions has also been assessed, thus envisioning the potential sensing ability of this system.

2.
Sci Technol Adv Mater ; 25(1): 2351791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817250

RESUMO

Targeted nanoparticles offer potential to selectively deliver therapeutics to cells; however, their subcellular fate following endocytosis must be understood to properly design mechanisms of drug release. Here we describe a nanoparticle platform and associated cell-based assay to observe lysosome trafficking of targeted nanoparticles in live cells. The nanoparticle platform utilizes two fluorescent dyes loaded onto PEG-poly(glutamic acid) and PEG-poly(Lysine) block co-polymers that also comprise azide reactive handles on PEG termini to attach antibody-based targeting ligands. Fluorophores were selected to be pH-sensitive (pHrodo Red) or pH-insensitive (Alexafluor 488) to report when nanoparticles enter low pH lysosomes. Dye-labelled block co-polymers were further assembled into polyion complex micelle nanoparticles and crosslinked through amide bond formation to form stable nano-scaffolds for ligand attachment. Cell binding and lysosome trafficking was determined in live cells by fluorescence imaging in 96-well plates and quantification of red- and green-fluorescence signals over time. The platform and assay was validated for selection of optimal antibody-derived targeting ligands directed towards CD22 for nanoparticle delivery. Kinetic analysis of uptake and lysosome trafficking indicated differences between ligand types and the ligand with the highest lysosome trafficking efficiency translated into effective DNA delivery with nanoparticles bearing the optimal ligand.


The ability of this pH-sensitive reporter platform to rapidly screen ligands in nanoparticle format will enable identification and production of targeted NPs with desired lysosome trafficking properties.

3.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37242002

RESUMO

The increasing resistance of bacteria to conventional antibiotics represents a severe global emergency for human health. The broad-spectrum antibacterial activity of silver has been known for a long time, and silver at the nanoscale shows enhanced antibacterial activity. This has prompted research into the development of silver-based nanomaterials for applications in clinical settings. In this work, the synthesis of three different silver nanoparticles (AgNPs) hybrids using both organic and inorganic supports with intrinsic antibacterial properties is described. The tuning of the AgNPs' shape and size according to the type of bioactive support was also investigated. Specifically, the commercially available sulfated cellulose nanocrystal (CNC), the salicylic acid functionalized reduced graphene oxide (rGO-SA), and the commercially available titanium dioxide (TiO2) were chosen as organic (CNC, rGO-SA) and inorganic (TiO2) supports. Then, the antimicrobial activity of the AgNP composites was assessed on clinically relevant multi-drug-resistant bacteria and the fungus Candida albicans. The results show how the formation of Ag nanoparticles on the selected supports provides the resulting composite materials with an effective antibacterial activity.

4.
Adv Ther (Weinh) ; 6(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37007587

RESUMO

Despite advances by recently approved antibody-drug conjugates in treating advanced gastric cancer patients, substantial limitations remain. Here, several key obstacles are overcome by developing a first-in-class ultrasmall (sub-8-nanometer (nm)) anti-human epidermal growth factor receptor 2 (HER2)-targeting drug-immune conjugate nanoparticle therapy. This multivalent fluorescent core-shell silica nanoparticle bears multiple anti-HER2 single-chain variable fragments (scFv), topoisomerase inhibitors, and deferoxamine moieties. Most surprisingly, drawing upon its favorable physicochemical, pharmacokinetic, clearance, and target-specific dual-modality imaging properties in a "hit and run" approach, this conjugate eradicated HER2-expressing gastric tumors without any evidence of tumor regrowth, while exhibiting a wide therapeutic index. Therapeutic response mechanisms are accompanied by the activation of functional markers, as well as pathway-specific inhibition. Results highlight the potential clinical utility of this molecularly engineered particle drug-immune conjugate and underscore the versatility of the base platform as a carrier for conjugating an array of other immune products and payloads.

5.
Nanoscale Horiz ; 8(6): 776-782, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-36951189

RESUMO

Cellulose nanocrystal and gold nanoparticles are assembled, in a unique way, to yield a novel modular glyconanomaterial whose surface is then easily engineered with one or two different headgroups, by exploiting a robust click chemistry route. We demonstrate the potential of this approach by conjugating monosaccharide headgroups to the glyconanomaterial and show that the sugars retain their binding capability to C-type lectin receptors, as also directly visualized by cryo-TEM.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Celulose/química , Química Click , Lectinas Tipo C
6.
Angew Chem Int Ed Engl ; 62(1): e202210140, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321387

RESUMO

Ultra-small gold nanoparticles (UAuNPs) are extremely interesting for applications in nanomedicine thanks to their good stability, biocompatibility, long circulation time and efficient clearance pathways. UAuNPs engineered with glycans (Glyco-UAuNPs) emerged as excellent platforms for many applications since the multiple copies of glycans can mimic the multivalent effect of glycoside clusters. Herein, we unravel a straightforward photo-induced synthesis of Glyco-UAuNPs based on a reliable and robust microfluidic approach. The synthesis occurs at room temperature avoiding the use of any further chemical reductant, templating agents or co-solvents. Exploiting 1 H NMR spectroscopy, we showed that the amount of thiol-ligand exposed on the UAuNPs is linearly correlated to the ligand concentration in the initial mixture. The results pave the way towards the development of a programmable synthetic approach, enabling an accurate design of the engineered UAuNPs or smart hybrid nano-systems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro/química , Nanopartículas Metálicas/química , Microfluídica , Ligantes , Nanopartículas/química , Polissacarídeos/química
7.
Front Chem ; 10: 1038796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583150

RESUMO

Protein-mimetic peptides (PMPs) are shorter sequences of self-assembling proteins, that represent remarkable building blocks for the generation of bioinspired functional supramolecular structures with multiple applications. The identification of novel aminoacidic sequences that permit the access to valuable biocompatible materials is an attractive area of research. In this work, in silico analysis of the Pseudomonas aeruginosa YeaZ protein (PaYeaZ) led to the identification of a tetradecapeptide that represents the shortest sequence responsible for the YeaZ-YeaZ dimer formation. Based on its sequence, an innovative 20-meric peptide, called PMP-2, was designed, synthesized, and characterized in terms of secondary structure and self-assembly properties. PMP-2 conserves a helical character and self-assembles into helical nanofibers in non-polar solvents (DMSO and trifluoroethanol), as well as in dilute (0.5 mM) aqueous solutions. In contrast, at higher concentrations (>2 mM) in water, a conformational transition from α-helix to ß-sheet occurs, which is accompanied by the Protein-mimetic peptide aggregation into 2D-sheets and formation supramolecular gel in aqueous environment. Our findings reveal a newly identified Protein-mimetic peptide that could turn as a promising candidate for future material applications.

8.
Polymers (Basel) ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36236131

RESUMO

The substitution of fossil-based monomers in the thermosetting formulations is a fundamental issue to face the environmental concerns related to the use of traditional resins. In this paper, styrene-free thermosetting resins were prepared to start from vegetable oils with different compositions and unsaturation degrees, namely soybean, hempseed, and linseed oils. Using terpenic comonomers such as limonene and ß-myrcene allows one to prepare thermosets avoiding the traditional fossil-based diluents such as styrene, thus obtaining an outstanding gain in terms of both environmental and safety concerns. Furthermore, the materials obtained reveal tunable physical properties upon the proper choice of the monomers, with glass transition temperature ranging from 40 to 80 °C and Young's modulus ranging from 200 to 1800 MPa. The possibility of preparing composite materials starting from the resins prepared in this way and natural fibres has also been explored due to the potential applications of bio-based composites in several industrial sectors.

9.
Bioconjug Chem ; 33(9): 1609-1619, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35943835

RESUMO

Optimizing the Diels-Alder (DA) reaction for aqueous coupling has resulted in practical methods to link molecules such as drugs and diagnostic agents to proteins. Both normal electron demand (NED) and inverse electron demand (IED) DA coupling schemes have been employed, but neither mechanism entails a common multipurpose reactive group. This report focuses on expanding the bioconjugation toolbox for cyclopentadiene through the identification of reactive groups that couple through NED or IED mechanisms in aqueous solution. Dienophiles and tetrazine derivatives were screened for reactivity and selectivity toward antibodies bearing cyclopentadiene amino acids to yield bioconjugates. Twelve NED dienophiles and four tetrazine-based IED substrates were identified as capable of practical biocoupling. Furthermore, tetrazine ligation to cyclopentadiene occurred at a rate of 3.3 ± 0.5 M-1 s-1 and was capable of bioorthogonal transformations, as evidenced by the selective protein labeling in serum. Finally, an antibody-drug conjugate (ADC)-bearing monomethyl auristatin E was prepared via tetrazine conjugation to cyclopentadiene. The resulting ADC was stable and demonstrated potent activity in vitro. These findings expand the utility of cyclopentadiene as a tool to couple entities to proteins via dual DA addition mechanisms.


Assuntos
Compostos Heterocíclicos , Imunoconjugados , Aminoácidos/química , Reação de Cicloadição , Ciclopentanos , Elétrons , Indicadores e Reagentes
10.
J Extracell Biol ; 1(8): e53, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38939054

RESUMO

Despite their clinical potential, Extracellular Vesicles (EVs) struggle to take the scene as a preeminent source of biomarkers in liquid biopsy. Limitations in the use of EVs origin from their inherent complexity and heterogeneity and from the sensitivity demand in detecting low to very low abundant disease-specific sub-populations. Such need can be met by digital detection, namely capable to reach the single-molecule sensitivity. Here we set to compare, side by side, two digital detection platforms that have recently gained increasing importance in the field of EVs. The platforms, both commercially available, are based on the principles of the Single Particle Interferometric Reflectance Imaging Sensing (SP-IRIS) and the Single Molecule Array technology (SiMoA) respectively. Sensitivity in immune-phenotyping of a well characterized EV sample is reported, discussing possible applicative implications and rationales for alternative or complementary use of the two platforms in biomarker discovery or validation.

11.
ACS Appl Nano Mater ; 4(12): 14153-14160, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34970641

RESUMO

The bioimaging of cancer cells by the specific targeting of overexpressed biomarkers is an approach that holds great promise in the identification of selective diagnostic tools. Tumor-associated human carbonic anhydrase (hCA) isoforms IX and XII have been considered so far as well-defined biomarkers, with their expression correlating with cancer progression and aggressiveness. Therefore, the availability of highly performant fluorescent tools tailored for their targeting and able to efficiently visualize such key targets is in high demand. We report here on the design and synthesis of a kind of quantum dot (QD)-based fluorescent glyconanoprobe coated with a binary mixture of ligands, which, according to the structure of the terminal domains, impart specific property sets to the fluorescent probe. Specifically, monosaccharide residues ensured the dispersibility in the biological medium, CA inhibitor residues provided specific targeting of membrane-anchored hCA IX overexpressed on bladder cancer cells, and the quantum dots imparted the optical/fluorescence properties.

12.
Gels ; 7(3)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34449602

RESUMO

Gelatin is a costless polypeptide material of natural origin, able to form hydrogels that are potentially useful in biomaterial scaffold design for drug delivery, cell cultures, and tissue engineering. However, gelatin hydrogels are unstable at physiological conditions, losing their features only after a few minutes at 37 °C. Accordingly, treatments to address this issue are of great interest. In the present work, we propose for the first time the use of bi- and trifunctional tetrazoles, most of them unknown to date, for photoinduced gelatin cross-linking towards the production of physiologically stable hydrogels. Indeed, after UV-B irradiation, aryl tetrazoles generate a nitrilimine intermediate that is reactive towards different functionalities, some of them constitutively present in the amino acid side chains of gelatin. The efficacy of the treatment strictly depends on the structure of the cross-linking agent used, and substantial improved stability was observed by switching from bifunctional to trifunctional cross-linkers.

13.
Sci Adv ; 7(10)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33674305

RESUMO

The underlying mechanisms contributing to injury-induced infection susceptibility remain poorly understood. Here, we describe a rapid increase in neutrophil cell numbers in the lungs following induction of thermal injury. These neutrophils expressed elevated levels of programmed death ligand 1 (PD-L1) and exhibited altered gene expression profiles indicative of a reparative population. Upon injury, neutrophils migrate from the bone marrow to the skin but transiently arrest in the lung vasculature. Arrested neutrophils interact with programmed cell death protein 1 (PD-1) on lung endothelial cells. A period of susceptibility to infection is linked to PD-L1+ neutrophil accumulation in the lung. Systemic treatment of injured animals with an anti-PD-L1 antibody prevented neutrophil accumulation in the lung and reduced susceptibility to infection but augmented skin healing, resulting in increased epidermal growth. This work provides evidence that injury promotes changes to neutrophils that are important for wound healing but contribute to infection susceptibility.

14.
Angew Chem Int Ed Engl ; 60(7): 3611-3618, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33047446

RESUMO

Water-stable metal halide perovskites could foster tremendous progresses in several research fields where their superior optical properties can make differences. In this work we report clear evidence of water stability in a lead-free metal halide perovskite, namely DMASnBr3 , obtained by means of diffraction, optical and X-ray photoelectron spectroscopy. Such unprecedented water-stability has been applied to promote photocatalysis in aqueous medium, in particular by devising a novel composite material by coupling DMASnBr3 to g-C3 N4 , taking advantage from the combination of their optimal photophysical properties. The prepared composites provide an impressive hydrogen evolution rate >1700 µmol g-1 h-1 generated by the synergistic activity of the two composite costituents. DFT calculations provide insight into this enhancement deriving it from the favorable alignment of interfacial energy levels of DMASnBr3 and g-C3 N4 . The demonstration of an efficient photocatalytic activity for a composite based on lead-free metal halide perovskite in water paves the way to a new class of light-driven catalysts working in aqueous environments.

15.
Sensors (Basel) ; 20(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113994

RESUMO

Passive air samplers (PASs) have been used for mapping gaseous mercury concentration in extensive areas. In this work, an easy-to-use and -prepare gold nanoparticle (NP)-based PAS has been investigated. The PAS is constituted of a microfibrous quartz disk filter impregnated of gold NP photo-growth on TiO2 NPs (Au@TiO2) and used as gaseous mercury adsorbing material. The disk was housed in a cylinder glass container and subjected to an axial diffusive sampling. The adsorbed mercury was measured by thermal desorption using a Tekran® instrument. Different amounts of Au@TiO2 (ranging between 4.0 and 4.0 × 10-3 mg) were deposited by drop-casting onto the fibrous substrate and assessed for about 1 year of deployment in outdoor environment with a mercury concentration mean of about 1.24 ± 0.32 ng/m3 in order to optimize the adsorbing layer. PASs showed a linear relation of the adsorbed mercury as a function of time with a rate of 18.5 ± 0.4 pg/day (≈1.5% of the gaseous concentration per day). However, only the PAS with 4 mg of Au@TiO2, provided with a surface density of about 3.26 × 10-2 mg/mm2 and 50 µm thick inside the fibrous quartz, kept stability in working, with a constant sampling rate (SR) (0.0138 ± 0.0005 m3/day) over an outdoor monitoring experimental campaign of about 1 year. On the other hand, higher sampling rates have been found when PASs were deployed for a few days, making these tools also effective for one-day monitoring. Furthermore, these PASs were used and re-used after each thermal desorption to confirm the chance to reuse such structured layers within their samplers, thus supporting the purpose to design inexpensive, compact and portable air pollutant sampling devices, ideal for assessing both personal and environmental exposures. During the whole deployment, PASs were aided by simultaneous Tekran® measurements.

16.
ACS Appl Mater Interfaces ; 12(42): 47435-47446, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32986954

RESUMO

Hematite (α-Fe2O3) is an earth-abundant indirect n-type semiconductor displaying a band gap of about 2.2 eV, useful for collecting a large fraction of visible photons, with frontier energy levels suitably aligned for carrying out the photoelectrochemical water oxidation reaction under basic conditions. The modification of hematite mesoporous thin-film photoanodes with Ti(IV), as well as their functionalization with an oxygen-evolving catalyst, leads to a 6-fold increase in photocurrent density with respect to the unmodified electrode. In order to provide a detailed understanding of this behavior, we report a study of Ti-containing phases within the mesoporous film structure. Using X-ray absorption fine structure and high-resolution transmission electron microscopy coupled with electron energy loss spectroscopy, we find that Ti(IV) ions are incorporated within ilmenite (FeTiO3) near-surface layers, thus modifying the semiconductor-electrolyte interface. To the best of our knowledge, this is the first time that an FeTiO3/α-Fe2O3 composite is used in a photoelectrochemical setup for water oxidation. In fact, previous studies of Ti(IV)-modified hematite photoanodes reported the formation of pseudobrookite (Fe2TiO5) at the surface. By means of transient absorption spectroscopy, transient photocurrent experiments, and electrochemical impedance spectroscopy, we show that the formation of the Fe2O3/FeTiO3 interface passivates deep traps at the surface and induces a large density of donor levels, resulting in a strong depletion field that separates electron and holes, favoring hole injection in the electrolyte. Our results provide the identification of a phase coexistence with enhanced photoelectrochemical performance, allowing for the rational design of new photoanodes with improved kinetics.

17.
ACS Appl Mater Interfaces ; 12(34): 38522-38529, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32805968

RESUMO

Anisotropic gold nanoparticles (AuNPs), with their unique physical and optical properties, are emerging as smart and key nanomaterials and are being exploited in many crucial fields. To further improve their range of action, anisotropic AuNPs have been coupled with semiconductors, mainly TiO2 (titania), receiving great interest as powerful platforms both in biomedicine and in catalytic applications. Such hybrid nanoparticles show new properties that arise from the synergic action of the components and rely on NP size, morphology, and arrangement. Therefore, continuous advances in design and fabrication of new hybrid titania@gold NPs (TiO2@AuNPs) are urgent and highly desirable. Here, we propose an effective protocol to produce multibranched AuNPs covered by a controlled TiO2 thin layer, exploiting a one-pot microfluidic process. The proposed method allows the in-flow and reliable synthesis of titania-functionalized-anisotropic gold nanoparticles by avoiding the use of toxic surfactants and controlling the titania shell formation. TiO2@AuNPs have been fully characterized in terms of morphology, stability, and biocompatibility, and their activity in photocatalysis has been tested and verified.

18.
MAbs ; 12(1): 1684749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31775561

RESUMO

The ability to genetically encode non-natural amino acids (nnAAs) into proteins offers an expanded tool set for protein engineering. nnAAs containing unique functional moieties have enabled the study of post-translational modifications, protein interactions, and protein folding. In addition, nnAAs have been developed that enable a variety of biorthogonal conjugation chemistries that allow precise and efficient protein conjugations. These are being studied to create the next generation of antibody-drug conjugates with improved efficacy, potency, and stability for the treatment of cancer. However, the efficiency of nnAA incorporation, and the productive yields of cell-based expression systems, have limited the utility and widespread use of this technology. We developed a process to isolate stable cell lines expressing a pyrrolysyl-tRNA synthetase/tRNApyl pair capable of efficient nnAA incorporation. Two different platform cell lines generated by these methods were used to produce IgG-expressing cell lines with normalized antibody titers of 3 g/L using continuous perfusion. We show that the antibodies produced by these platform cells contain the nnAA functionality that enables facile conjugations. Characterization of these highly active and robust platform hosts identified key parameters that affect nnAA incorporation efficiency. These highly efficient host platforms may help overcome the expression challenges that have impeded the developability of this technology for manufacturing proteins with nnAAs and represents an important step in expanding its utility.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Antineoplásicos/química , Imunoconjugados/genética , Imunoglobulina G/genética , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Aminoácidos/química , Animais , Células CHO , Cricetulus , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Imunoconjugados/química , Imunoglobulina G/química , Lisina/análogos & derivados , Lisina/química , Processamento de Proteína Pós-Traducional
19.
Bioconjug Chem ; 30(9): 2340-2348, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31380623

RESUMO

The normal electron-demand Diels-Alder (DA) cycloaddition is a classic transformation routinely used in synthesis; however, applications in biological systems are limited. Here, we report a spiro[2.4]hepta-4,6-diene-containing noncanonical amino acid (SCpHK) capable of efficient incorporation into antibodies and subsequent coupling with maleimide via a DA reaction. SCpHK was stable throughout protein expression in mammalian cells and enabled covalent attachment of maleimide drug-linkers yielding DA antibody-drug conjugates (DA-ADCs) with nearly quantitative conversion in a one-step process. The uncatalyzed DA reaction between SCpHK and maleimide in aqueous buffer was rapid (1.8-5.4 M-1 s-1), and the antibody-drug adduct was stable in rat serum for at least 1 week at 37 °C. Anti-EphA2 DA-ADCs containing AZ1508 or SG3249 maleimide drug-linkers were potent inhibitors of tumor growth in PC3 tumor models in vivo. The DA bioconjugation strategy described here represents a simple method to produce site-specific and stable ADCs with maleimide drug-linkers.


Assuntos
Imunoconjugados/química , Maleimidas/química , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Reação de Cicloadição , Humanos , Imunoconjugados/farmacologia , Modelos Moleculares , Células PC-3 , Conformação Proteica , Compostos de Espiro/química
20.
PLoS One ; 14(5): e0216356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31071154

RESUMO

Non-natural amino acids (nnAA) contain unique functional moieties that greatly expand the available tool set for protein engineering. But incorporation of nnAAs requires the function of an orthogonal aminoacyl tRNA synthetase/tRNA pair. Stable cell lines expressing these components have been shown capable of producing gram per liter levels of antibodies with nnAAs. However, little has been reported on the genetic makeup of these cells. To gain a better understanding of the minimal requirements for efficient nnAA incorporation we developed qPCR methods for the quantitation of the key components. Here we describe the development of qPCR assays for the quantification of tRNApyl and pylRS. qPCR was chosen because it provides a large dynamic range, has high specificity for its target, and is a non-radioactive method used routinely for cell line characterization. Designing assays for tRNAs present challenges due to their short length (~72 nucleotides) and high secondary structure. These tRNA assays have a ≥ 5 log dynamic range with the tRNApyl assays being able to discern the mature and unprocessed forms of the tRNApyl. Cell line analysis showed tRNApyl was expressed at higher levels than the CHO-K1 endogenous Met and Phe tRNAs and that >88% of tRNApyl was the mature form.


Assuntos
Aminoacil-tRNA Sintetases , Proteínas de Bactérias , Lisina/análogos & derivados , Methanosarcina , Aminoacil-tRNA Sintetases/biossíntese , Aminoacil-tRNA Sintetases/genética , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Células CHO , Cricetulus , Engenharia Genética , Lisina/metabolismo , Methanosarcina/enzimologia , Methanosarcina/genética , RNA de Transferência/biossíntese , RNA de Transferência/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...