Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Metab ; 5(11): 1969-1985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884694

RESUMO

T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Glucose , Camundongos , Humanos , Animais , Glucose/metabolismo , Transporte Biológico/fisiologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Diferenciação Celular , Linfócitos T CD8-Positivos/metabolismo
2.
Circulation ; 147(12): 956-972, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484244

RESUMO

BACKGROUND: Placental heart development and embryonic heart development occur in parallel, and these organs have been proposed to exert reciprocal regulation during gestation. Poor placentation has been associated with congenital heart disease, an important cause of infant mortality. However, the mechanisms by which altered placental development can lead to congenital heart disease remain unresolved. METHODS: In this study, we use an in vivo neutrophil-driven placental inflammation model through antibody depletion of maternal circulating neutrophils at key stages during time-mated murine pregnancy: embryonic days 4.5 and 7.5. Pregnant mice were culled at embryonic day 14.5 to assess placental and embryonic heart development. A combination of flow cytometry, histology, and bulk RNA sequencing was used to assess placental immune cell composition and tissue architecture. We also used flow cytometry and single-cell sequencing to assess embryonic cardiac immune cells at embryonic day 14.5 and histology and gene analyses to investigate embryonic heart structure and development. In some cases, offspring were culled at postnatal days 5 and 28 to assess any postnatal cardiac changes in immune cells, structure, and cardiac function, as measured by echocardiography. RESULTS: In the present study, we show that neutrophil-driven placental inflammation leads to inadequate placental development and loss of barrier function. Consequently, placental inflammatory monocytes of maternal origin become capable of migration to the embryonic heart and alter the normal composition of resident cardiac macrophages and cardiac tissue structure. This cardiac impairment continues into postnatal life, hindering normal tissue architecture and function. Last, we show that tempering placental inflammation can prevent this fetal cardiac defect and is sufficient to promote normal cardiac function in postnatal life. CONCLUSIONS: Taken together, these observations provide a mechanistic paradigm whereby neutrophil-driven inflammation in pregnancy can preclude normal embryonic heart development as a direct consequence of poor placental development, which has major implications on cardiac function into adult life.


Assuntos
Cardiopatias Congênitas , Placenta , Gravidez , Feminino , Camundongos , Animais , Placenta/patologia , Placentação , Feto , Inflamação/patologia
3.
Circulation ; 146(25): 1930-1945, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36417924

RESUMO

BACKGROUND: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS: In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS: We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS: Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.


Assuntos
Doenças Autoimunes , Cardiomiopatias , Miocardite , Humanos , Camundongos , Animais , Autoimunidade , Células T de Memória , Miocardite/etiologia , Miocárdio , Cardiomiopatias/complicações , Miosinas Cardíacas , Inflamação/complicações
4.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36129440

RESUMO

Activation of T cells relies on the availability of intracellular cholesterol for an effective response after stimulation. We investigated the contribution of cholesterol derived from extracellular uptake by the low-density lipoprotein (LDL) receptor in the immunometabolic response of T cells. By combining proteomics, gene expression profiling, and immunophenotyping, we described a unique role for cholesterol provided by the LDLR pathway in CD8+ T cell activation. mRNA and protein expression of LDLR was significantly increased in activated CD8+ compared to CD4+ WT T cells, and this resulted in a significant reduction of proliferation and cytokine production (IFNγ, Granzyme B, and Perforin) of CD8+ but not CD4+ T cells from Ldlr -/- mice after in vitro and in vivo stimulation. This effect was the consequence of altered cholesterol routing to the lysosome resulting in a lower mTORC1 activation. Similarly, CD8+ T cells from humans affected by familial hypercholesterolemia (FH) carrying a mutation on the LDLR gene showed reduced activation after an immune challenge.


Assuntos
Linfócitos T CD8-Positivos , Colesterol , Ativação Linfocitária , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores de LDL , Animais , Linfócitos T CD8-Positivos/metabolismo , Colesterol/metabolismo , Citocinas/metabolismo , Granzimas/metabolismo , Humanos , Hiperlipoproteinemia Tipo II , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Perforina , RNA Mensageiro/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
5.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35472029

RESUMO

Voltage-gated hydrogen channel 1 (Hvcn1) is a voltage-gated proton channel, which reduces cytosol acidification and facilitates the production of ROS. The increased expression of this channel in some cancers has led to proposing Hvcn1 antagonists as potential therapeutics. While its role in most leukocytes has been studied in depth, the function of Hvcn1 in T cells remains poorly defined. We show that Hvcn1 plays a nonredundant role in protecting naive T cells from intracellular acidification during priming. Despite sharing overall functional impairment in vivo and in vitro, Hvcn1-deficient CD4+ and CD8+ T cells display profound differences during the transition from naive to primed T cells, including in the preservation of T cell receptor (TCR) signaling, cellular division, and death. These selective features result, at least in part, from a substantially different metabolic response to intracellular acidification associated with priming. While Hvcn1-deficient naive CD4+ T cells reprogram to rescue the glycolytic pathway, naive CD8+ T cells, which express high levels of this channel in the mitochondria, respond by metabolically compensating mitochondrial dysfunction, at least in part via AMPK activation. These observations imply heterogeneity between adaptation of naive CD4+ and CD8+ T cells to intracellular acidification during activation.


Assuntos
Hidrogênio , Prótons , Concentração de Íons de Hidrogênio , Contagem de Linfócitos , Transdução de Sinais
6.
Cell Metab ; 33(8): 1509-1511, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348095

RESUMO

The tumor microenvironment is immunosuppressive. Here we preview two recent studies from Ma et al. (2021) in Cell Metabolism and Xu et al. (2021) in Immunity that describe a key role of T cell-expressed CD36 in enhancing lipid uptake and mediating lipid peroxidation that ultimately leads to CD8+ T cell dysfunction, ferroptosis, and reduced anti-tumor function.


Assuntos
Ferroptose , Neoplasias , Antígenos CD36 , Linfócitos T CD8-Positivos , Humanos , Microambiente Tumoral
8.
Mol Ther Methods Clin Dev ; 20: 324-336, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33511246

RESUMO

Regulatory T cells (Tregs) are emerging as a new cell-based therapy in solid organ transplantation. Adoptive transfer of Tregs has been shown preclinically to protect from graft rejection, and the safety of Treg therapy has been demonstrated in clinical trials. Despite these successes, the in vivo distribution and persistence of adoptively transferred Tregs remained elusive, which hampers clinical translation. Here we isolated human Tregs using a GMP-compatible protocol and lentivirally transduced them with the human sodium iodide symporter to render them traceable in vivo by radionuclide imaging. Engineered human Tregs were characterized for phenotype, survival, suppressive capacity, and reporter function. To study their trafficking behavior, they were subsequently administered to humanized mice with human skin transplants. Traceable Tregs were quantified in skin grafts by non-invasive nano-single-photon emission computed tomography (nanoSPECT)/computed tomography (CT) for up to 40 days, and the results were validated ex vivo. Using this approach, we demonstrated that Treg trafficking to skin grafts was regulated by the presence of recipient Gr-1+ innate immune cells. We demonstrated the utility of radionuclide reporter gene-afforded quantitative Treg in vivo tracking, addressing a fundamental need in Treg therapy development and offering a clinically compatible methodology for future Treg therapy imaging in humans.

9.
Mol Aspects Med ; 77: 100888, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32814624

RESUMO

In order to fulfill their effector and patrolling functions, lymphocytes traffic through the body and need to adapt to different tissue microenvironments. First, mature lymphocytes egress the bone marrow and the thymus into the vascular system. Circulating lymphocytes can exit the vasculature and penetrate into the tissues, either for patrolling in search for pathogens or to eliminate infection and activate the adaptive immune response. The cytoskeletal reorganization necessary to sustain migration require high levels of energy thus presenting a substantial bioenergetic challenge to migrating cells. The metabolic regulation of lymphocyte motility and trafficking has only recently begun to be investigated. In this review we will summarize current knowledge of the crosstalk between cell metabolism and the cytoskeleton in T lymphocytes, and discuss the concept that lymphocyte metabolism may reprogram in response to migratory stimuli and adapt to the different environmental cues received during recirculation in tissues.


Assuntos
Linfócitos T , Imunidade Adaptativa , Movimento Celular , Humanos , Linfócitos
10.
Nat Commun ; 11(1): 3595, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681081

RESUMO

Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant ß-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response.


Assuntos
Células Endoteliais/metabolismo , Microvasos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Masculino , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , beta Catenina/genética , beta Catenina/metabolismo
11.
Cardiovasc Res ; 116(10): 1666-1687, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32352535

RESUMO

The novel coronavirus disease (COVID-19) outbreak, caused by SARS-CoV-2, represents the greatest medical challenge in decades. We provide a comprehensive review of the clinical course of COVID-19, its comorbidities, and mechanistic considerations for future therapies. While COVID-19 primarily affects the lungs, causing interstitial pneumonitis and severe acute respiratory distress syndrome (ARDS), it also affects multiple organs, particularly the cardiovascular system. Risk of severe infection and mortality increase with advancing age and male sex. Mortality is increased by comorbidities: cardiovascular disease, hypertension, diabetes, chronic pulmonary disease, and cancer. The most common complications include arrhythmia (atrial fibrillation, ventricular tachyarrhythmia, and ventricular fibrillation), cardiac injury [elevated highly sensitive troponin I (hs-cTnI) and creatine kinase (CK) levels], fulminant myocarditis, heart failure, pulmonary embolism, and disseminated intravascular coagulation (DIC). Mechanistically, SARS-CoV-2, following proteolytic cleavage of its S protein by a serine protease, binds to the transmembrane angiotensin-converting enzyme 2 (ACE2) -a homologue of ACE-to enter type 2 pneumocytes, macrophages, perivascular pericytes, and cardiomyocytes. This may lead to myocardial dysfunction and damage, endothelial dysfunction, microvascular dysfunction, plaque instability, and myocardial infarction (MI). While ACE2 is essential for viral invasion, there is no evidence that ACE inhibitors or angiotensin receptor blockers (ARBs) worsen prognosis. Hence, patients should not discontinue their use. Moreover, renin-angiotensin-aldosterone system (RAAS) inhibitors might be beneficial in COVID-19. Initial immune and inflammatory responses induce a severe cytokine storm [interleukin (IL)-6, IL-7, IL-22, IL-17, etc.] during the rapid progression phase of COVID-19. Early evaluation and continued monitoring of cardiac damage (cTnI and NT-proBNP) and coagulation (D-dimer) after hospitalization may identify patients with cardiac injury and predict COVID-19 complications. Preventive measures (social distancing and social isolation) also increase cardiovascular risk. Cardiovascular considerations of therapies currently used, including remdesivir, chloroquine, hydroxychloroquine, tocilizumab, ribavirin, interferons, and lopinavir/ritonavir, as well as experimental therapies, such as human recombinant ACE2 (rhACE2), are discussed.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus , Miocardite , Pandemias , Pneumonia Viral , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Humanos , Miocardite/diagnóstico , Miocardite/tratamento farmacológico , Miocardite/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Medição de Risco , SARS-CoV-2
12.
Cell Stress ; 3(8): 240-266, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31440740

RESUMO

Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.

13.
Diabetes ; 68(7): 1473-1484, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31048369

RESUMO

ß-Cell failure is central to the development of type 2 diabetes mellitus (T2DM). Dysregulation of metabolic and inflammatory processes during obesity contributes to the loss of islet function and impaired ß-cell insulin secretion. Modulating the immune system, therefore, has the potential to ameliorate diseases. We report that inducing sustained expression of ß-catenin in conventional dendritic cells (cDCs) provides a novel mechanism to enhance ß-cell insulin secretion. Intriguingly, cDCs with constitutively activated ß-catenin induced islet expansion by increasing ß-cell proliferation in a model of diet-induced obesity. We further found that inflammation in these islets was reduced. Combined, these effects improved ß-cell insulin secretion, suggesting a unique compensatory mechanism driven by cDCs to generate a greater insulin reserve in response to obesity-induced insulin resistance. Our findings highlight the potential of immune modulation to improve ß-cell mass and function in T2DM.


Assuntos
Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Citometria de Fluxo , Hibridização In Situ , Hibridização in Situ Fluorescente , Células Secretoras de Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
14.
Front Immunol ; 10: 271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863398

RESUMO

Protective immunity relies upon differentiation of T cells into the appropriate subtype required to clear infections and efficient effector T cell localization to antigen-rich tissue. Recent studies have highlighted the role played by subpopulations of tissue-resident memory (TRM) T lymphocytes in the protection from invading pathogens. The intestinal mucosa and associated lymphoid tissue are densely populated by a variety of resident lymphocyte populations, including αß and γδ CD8+ intraepithelial T lymphocytes (IELs) and CD4+ T cells. While the development of intestinal γδ CD8+ IELs has been extensively investigated, the origin and function of intestinal CD4+ T cells have not been clarified. We report that CCR9 signals delivered during naïve T cell priming promote the differentiation of a population of α4ß7+ IFN-γ-producing memory CD4+ T cells, which displays a TRM molecular signature, preferentially localizes to the gastrointestinal (GI) tract and associated lymphoid tissue and cannot be mobilized by remote antigenic challenge. We further show that this population shapes the immune microenvironment of GI tissue, thus affecting effector immunity in infection and cancer.


Assuntos
Quimiocinas CC/fisiologia , Intestinos/imunologia , Linfócitos T/imunologia , Animais , Feminino , Memória Imunológica , Infecções/imunologia , Interferon gama/biossíntese , Tecido Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Receptores CCR/fisiologia
15.
Nat Commun ; 9(1): 3083, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082772

RESUMO

Cholesterol homeostasis has a pivotal function in regulating immune cells. Here we show that apolipoprotein E (apoE) deficiency leads to the accumulation of cholesterol in the cell membrane of dendritic cells (DC), resulting in enhanced MHC-II-dependent antigen presentation and CD4+ T-cell activation. Results from WT and apoE KO bone marrow chimera suggest that apoE from cells of hematopoietic origin has immunomodulatory functions, regardless of the onset of hypercholesterolemia. Humans expressing apoE4 isoform (ε4/3-ε4/4) have increased circulating levels of activated T cells compared to those expressing WT apoE3 (ε3/3) or apoE2 isoform (ε2/3-ε2/2). This increase is caused by enhanced antigen-presentation by apoE4-expressing DCs, and is reversed when these DCs are incubated with serum containing WT apoE3. In summary, our study identifies myeloid-produced apoE as a key physiological modulator of DC antigen presentation function, paving the way for further explorations of apoE as a tool to improve the management of immune diseases.


Assuntos
Apresentação de Antígeno , Apolipoproteínas E/genética , Células Dendríticas/metabolismo , Ativação Linfocitária , Células Mieloides/metabolismo , Linfócitos T/metabolismo , Animais , Apolipoproteína E4/genética , Células da Medula Óssea/citologia , Diferenciação Celular , Movimento Celular , Colesterol/metabolismo , Células Dendríticas/citologia , Ácidos Graxos/metabolismo , Feminino , Células-Tronco Hematopoéticas/citologia , Antígenos de Histocompatibilidade Classe II , Humanos , Hipercolesterolemia/metabolismo , Complexo Principal de Histocompatibilidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxisteróis/química , Oxisteróis/metabolismo , Fosfolipídeos/química
18.
J Leukoc Biol ; 104(2): 285-293, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29451682

RESUMO

Dynamic reorganization of the cytoskeleton is essential for numerous cellular processes including leukocyte migration. This process presents a substantial bioenergetic challenge to migrating cells as actin polymerization is dependent on ATP hydrolysis. Hence, migrating cells must increase ATP production to meet the increased metabolic demands of cytoskeletal reorganization. Despite this long-standing evidence, the metabolic regulation of leukocyte motility and trafficking has only recently begun to be investigated. In this review, we will summarize current knowledge of the crosstalk between cell metabolism and the cytoskeleton in leukocytes, and discuss the concept that leukocyte metabolism may reprogram in response to migratory stimuli and the different environmental cues received during recirculation ultimately regulating leukocyte motility and migration.


Assuntos
Movimento Celular/fisiologia , Leucócitos/fisiologia , Animais , Citoesqueleto , Humanos
19.
Bio Protoc ; 8(12): e2886, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285995

RESUMO

The vascular endothelium is essential to normal vascular homeostasis. Its dysfunction participates in various cardiovascular disorders. Murine endothelial cell culture is an important tool for cardiovascular disease research. This protocol demonstrates a quick, efficient method for the isolation of microvascular endothelial cells from murine tissues without any special equipment. To isolate endothelial cells, the lung or heart were mechanically minced and enzymatically digested with collagenase and trypsin. The single cell suspension obtained was then incubated with an anti-CD31, anti-CD105 antibody and with biotinylated isolectin B-4. The endothelial cells were harvested using magnetic bead separation with rat anti-mouse Ig- and streptavidin-conjugated microbeads. Endothelial cells were expanded and collected for subsequent analyses. The morphological and phenotypic features of these cultures remained stable over 10 passages in culture. There was no overgrowth of contaminating cells of non-endothelial origin at any stage.

20.
Immunity ; 47(5): 875-889.e10, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166588

RESUMO

Migration of activated regulatory T (Treg) cells to inflamed tissue is crucial for their immune-modulatory function. While metabolic reprogramming during Treg cell differentiation has been extensively studied, the bioenergetics of Treg cell trafficking remains undefined. We have investigated the metabolic demands of migrating Treg cells in vitro and in vivo. We show that glycolysis was instrumental for their migration and was initiated by pro-migratory stimuli via a PI3K-mTORC2-mediated pathway culminating in induction of the enzyme glucokinase (GCK). Subsequently, GCK promoted cytoskeletal rearrangements by associating with actin. Treg cells lacking this pathway were functionally suppressive but failed to migrate to skin allografts and inhibit rejection. Similarly, human carriers of a loss-of-function GCK regulatory protein gene-leading to increased GCK activity-had reduced numbers of circulating Treg cells. These cells displayed enhanced migratory activity but similar suppressive function, while conventional T cells were unaffected. Thus, GCK-dependent glycolysis regulates Treg cell migration.


Assuntos
Glucoquinase/fisiologia , Glicólise , Linfócitos T Reguladores/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos CD28/fisiologia , Antígeno CTLA-4/fisiologia , Células Cultivadas , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/fisiologia , Camundongos , Camundongos Endogâmicos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...