Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 96(6-1): 062125, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347311

RESUMO

We study long-range power-law correlated disorder on square and cubic lattices. In particular, we present high-precision results for the percolation thresholds and the fractal dimension of the largest clusters as a function of the correlation strength. The correlations are generated using a discrete version of the Fourier filtering method. We consider two different metrics to set the length scales over which the correlations decay, showing that the percolation thresholds are highly sensitive to such system details. By contrast, we verify that the fractal dimension d_{f} is a universal quantity and unaffected by the choice of metric. We also show that for weak correlations, its value coincides with that for the uncorrelated system. In two dimensions we observe a clear increase of the fractal dimension with increasing correlation strength, approaching d_{f}→2. The onset of this change does not seem to be determined by the extended Harris criterion.

2.
Phys Rev Lett ; 116(12): 128301, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058105

RESUMO

Using a combination of the multicanonical Monte Carlo algorithm and the replica-exchange method, we investigate the influence of bending stiffness on the conformational phases of a bead-stick homopolymer model and present the pseudophase diagram for the complete range of semiflexible polymers, from flexible to stiff. Although it is a simple model, we observe a rich variety of conformational phases, reminiscent of conformations observed for synthetic polymers or biopolymers. Depending on the bending stiffness, the model exhibits different pseudophases like bent, hairpin, or toroidal. In particular, we find thermodynamically stable knots and unusual transitions into these knotted phases with a clear phase coexistence, but almost constant mean total energy, and hence almost no latent heat.

3.
Polymers (Basel) ; 8(9)2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30974608

RESUMO

We review the current state on the thermodynamic behavior and structural phases of self- and mutually-attractive dilute semiflexible polymers that undergo temperature-driven transitions. In extreme dilution, polymers may be considered isolated, and this single polymer undergoes a collapse or folding transition depending on the internal structure. This may go as far as to stable knot phases. Adding polymers results in aggregation, where structural motifs again depend on the internal structure. We discuss in detail the effect of semiflexibility on the collapse and aggregation transition and provide perspectives for interesting future investigations.

4.
J Chem Phys ; 141(11): 114908, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25240373

RESUMO

We investigate the aggregation transition of theta polymers in spherical confinement with multicanonical simulations. This allows for a systematic study of the effect of density on the aggregation transition temperature for up to 24 monodisperse polymers. Our results for solutions in the dilute regime show that polymers can be considered isolated for all temperatures larger than the aggregation temperature, which is shown to be a function of the density. The resulting competition between single-polymer collapse and aggregation yields the lower temperature bound of the isolated chain approximation. We provide entropic and energetic arguments to describe the density dependence and finite-size effects of the aggregation transition for monodisperse solutions in finite systems. This allows us to estimate the aggregation transition temperature of dilute systems in a spherical cavity, using a few simulations of small, sufficiently dilute polymer systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...