Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 10(20): 11755-11765, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35496632

RESUMO

The macrocyclic ligand calix[4]arene (L1) and its sulphur-containing analogue thia[4]calixarene (L2) are promising precursors for functional molecular materials as they offer rational functionalization with various organic groups. Here, we present the first example of lanthanide-based coordination polymers built from the macrocyclic thiacalix[4]arene backbone bearing four carboxylic moieties, namely, ligand H4L3. The combination of H4L3 with the Tb3+ and Dy3+ cations led to the formation of 1D ladder-type coordination polymers with the formula [LnIIIHL3DMF3]·(DMF) (where DMF = dimethylformamide and Ln = Tb or Dy, denoted as HL3-Tb and HL3-Dy), which resulted from the coordination of the lanthanide cations with the partially deprotonated ligand HL33- that behaved as a T-shape connector. The coordination sphere around the metal was completed by the coordinated DMF solvent molecules. By combining both Tb3+ and Dy3+ cations, isostructural heterobimetallic solid solutions HL3-Tb1- x Dy x were also prepared. HL3-Tb and HL3-Dy showed visible light photoluminescence originating from the f-f electronic transitions of pale green emissive Tb3+ and pale yellow emissive Dy3+ with efficient sensitization by the functionalized thia[4]calixarene ligand HL3. In the HL3-Tb1- x Dy x solid solutions, the Tb/Dy ratio governed both the emission colour as well as the emission quantum yield, which reached even 28% at room temperature for HL3-Tb. Moreover, HL3-Dy exhibited a slow magnetic relaxation effect related to the magnetic anisotropy of the dodecahedral Dy3+ complexes, which were well isolated in the crystal lattice by expanded organic spacers.

2.
J Chem Phys ; 142(10): 101926, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770515

RESUMO

The self-assembly of a metal-free porphyrin bearing two pyridyl coordinating sites and two pentyl chains at trans meso positions was investigated under ultrahigh vacuum on a Ag(111) surface by scanning tunneling microscopy (STM). The STM measurements revealed a well-ordered close-packed structure with a rhombic unit cell for coverages ≤1 monolayer with their molecular plane parallel to the surface. The growth direction of the molecular islands is aligned along the step edges, which are restructured due to molecule-substrate interactions. The shorter unit cell vector of the molecular superstructure follows the〈1-10〉direction of the Ag(111) substrate. Hydrogen bonds between pyridyl and pyrrole groups of neighboring molecules as well as weak van der Waals forces between the pentyl chains stabilize the superstructure. Deposition of cobalt atoms onto the close-packed structure at room temperature leads to the formation of a hexagonal porous network stabilized by metal-ligand bonding between the pyridyl ligands and the cobalt atoms. Thermal annealing of the Co-coordination network at temperatures >450 K results in the transformation of the hexagonal network into a second close-packed structure. Changes in the molecule-substrate interactions due to metalation of the porphyrin core with Co as well as intermolecular interactions can explain the observed structural transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...