Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(30): 10933-8, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25009182

RESUMO

Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occurs remain unknown. Here, we searched for intracellular Ca-carbonate inclusions in 68 cyanobacterial strains distributed throughout the phylogenetic tree of cyanobacteria. We discovered that diverse unicellular cyanobacterial taxa form intracellular amorphous Ca-carbonates with at least two different distribution patterns, suggesting the existence of at least two distinct mechanisms of biomineralization: (i) one with Ca-carbonate inclusions scattered within the cell cytoplasm such as in Ca. G. lithophora, and (ii) another one observed in strains belonging to the Thermosynechococcus elongatus BP-1 lineage, in which Ca-carbonate inclusions lie at the cell poles. This pattern seems to be linked with the nucleation of the inclusions at the septum of the cells, showing an intricate and original connection between cell division and biomineralization. These findings indicate that intracellular Ca-carbonate biomineralization by cyanobacteria has been overlooked by past studies and open new perspectives on the mechanisms and the evolutionary history of intra- and extracellular Ca-carbonate biomineralization by cyanobacteria.


Assuntos
Carbonato de Cálcio/metabolismo , Cianobactérias/metabolismo , Citoplasma/metabolismo , Corpos de Inclusão/metabolismo , Sequência de Bases , Cianobactérias/classificação , Cianobactérias/genética , Citoplasma/genética , Corpos de Inclusão/genética , Dados de Sequência Molecular
2.
Arch Microbiol ; 194(2): 87-102, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21761170

RESUMO

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharide (KPS) biosynthesis, is constituted by the rkpU, rkpAGHIJ, and kpsF3 genes. Two mutants in this region affecting the rkpA (SVQ536) and rkpI (SVQ538) genes were constructed. Polyacrylamide gel electrophoresis and (1)H-NMR analyses did not detect KPS in these mutants. RT-PCR experiments indicated that, most probably, the rkpAGHI genes are cotranscribed. Glycine max cultivars (cvs.) Williams and Peking inoculated with mutants SVQ536 and SVQ538 showed reduced nodulation and symptoms of nitrogen starvation. Many pseudonodules were also formed on the American cv. Williams but not on the Asiatic cv. Peking, suggesting that in the determinate nodule-forming S. fredii-soybean symbiosis, bacterial KPS might be involved in determining cultivar-strain specificity. S. fredii HH103 mutants unable to produce KPS or exopolysaccharide (EPS) also showed reduced symbiotic capacity with Glycyrrhiza uralensis, an indeterminate nodule-forming legume. A HH103 exoA-rkpH double mutant unable to produce KPS and EPS was still able to form some nitrogen-fixing nodules on G. uralensis. Thus, here we describe for the first time a Sinorhizobium mutant strain, which produces neither KPS nor EPS is able to induce the formation of functional nodules in an indeterminate nodule-forming legume.


Assuntos
Glycyrrhiza uralensis/microbiologia , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium fredii/metabolismo , Simbiose/genética , Proteínas de Bactérias/genética , Flavonoides/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Teste de Complementação Genética , Glycyrrhiza uralensis/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutação , Fixação de Nitrogênio/genética , Polissacarídeos Bacterianos/genética , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium/genética , Sinorhizobium/metabolismo , Sinorhizobium fredii/genética , Glycine max/genética , Glycine max/metabolismo , Glycine max/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...