Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem C Mater ; 11(24): 8161-8169, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362026

RESUMO

We present the simple synthesis of a star-shape non-fullerene acceptor (NFA) for application in organic solar cells. This NFA possesses a D(A)3 structure in which the electron-donating core is an aza-triangulene unit and we report the first crystal structure for a star shape NFA based on this motive. We fully characterized this molecule's optoelectronic properties in solution and thin films, investigating its photovoltaic properties when blended with PTB7-Th as the electron donor component. We demonstrate that the aza-triangulene core leads to a strong absorption in the visible range with an absorption edge going from 700 nm in solution to above 850 nm in the solid state. The transport properties of the pristine molecule were investigated in field effect transistors (OFETs) and in blends with PTB7-Th following a Space-Charge-Limited Current (SCLC) protocol. We found that the mobility of electrons measured in films deposited from o-xylene and chlorobenzene are quite similar (up to 2.70 × 10-4 cm2 V-1 s-1) and that the values are not significantly modified by thermal annealing. The new NFA combined with PTB7-Th in the active layer of inverted solar cells leads to a power conversion efficiency of around 6.3% (active area 0.16 cm2) when processed from non-chlorinated solvents without thermal annealing. Thanks to impedance spectroscopy measurements performed on the solar cells, we show that the charge collection efficiency of the devices is limited by the transport properties rather than by recombination kinetics. Finally, we investigated the stability of this new NFA in various conditions and show that the star-shape molecule is more resistant against photolysis in the presence and absence of oxygen than ITIC.

2.
ACS Nano ; 17(10): 9361-9373, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37171993

RESUMO

Large scale and low-cost nanopatterning of materials is of tremendous interest for optoelectronic devices. Nanoimprint lithography has emerged in recent years as a nanofabrication strategy that is high-throughput and has a resolution comparable to that of electron-beam lithography (EBL). It is enabled by pattern replication of an EBL master into polydimethylsiloxane (PDMS), that is then used to pattern a resist for further processing, or a sol-gel that could be calcinated into a solid material. Although the sol-gel chemistry offers a wide spectrum of material compositions, metals are still difficult to achieve. This gap could be bridged by using colloidal nanoparticles as resist, but deep understanding of the key parameters is still lacking. Here, we use supported metallic nanocubes as a model resist to gain fundamental insights into nanoparticle imprinting. We uncover the major role played by the surfactant layer trapped between nanocubes and substrate, and measure its thickness with subnanometer resolution by using gap plasmon spectroscopy as a metrology platform. This enables us to quantify the van der Waals (VDW) interactions responsible for the friction opposing the nanocube motion, and we find that these are almost in quantitative agreement with the Stokes drag acting on the nanocubes during nanoimprint, that is estimated with a simplified fluid mechanics model. These results reveal that a minimum thickness of surfactant is required, acting as a spacer layer mitigating van der Waals forces between nanocubes and the substrate. In the light of these findings we propose a general method for resist preparation to achieve optimal nanoparticle mobility and show the assembly of printable Ag and Au nanocube grids, that could enable the fabrication of low-cost transparent electrodes of high material quality upon nanocube epitaxy.

3.
ChemSusChem ; 14(17): 3502-3510, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34096201

RESUMO

The synthesis of four non-fullerene acceptors (NFAs) with a "A-π-D-π-A" structure, in which the electron-donating core is extended, was achieved. The molecules differed by the nature of the solubilizing groups on the π-spacer and/or the presence of fluorine atoms on the peripheral electron-accepting units. The optoelectronic properties of the molecules were characterized in solution, in thin film, and in photovoltaic devices. The nature of the solubilizing groups had a minor influence on the optoelectronic properties but affected the organization in the solid state. On the other hand, the fluorine atoms influenced the optoelectronics properties and increased the photo-stability of the molecules in thin films. Compared to reference ITIC, the extended molecules showed a wider absorption across the visible range and higher lowest unoccupied molecular orbital energy levels. The photovoltaic performances of the four NFAs were assessed in binary blends using PM6 (PBDB-T-2F) as the donating polymer and in ternary blends with ITIC-4F. Solar cells (active area 0.27 cm2 ) showed power conversion efficiencies of up to 11.1 % when ternary blends were processed from non-halogenated solvents, without any thermal post-treatment or use of halogenated additives, making this process compatible with industrial requirements.

4.
ACS Appl Mater Interfaces ; 12(25): 28404-28415, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32476409

RESUMO

The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.

5.
ACS Appl Mater Interfaces ; 11(47): 44820-44828, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31690074

RESUMO

Hybrid organic-inorganic materials are a new class of materials used as interfacial layers (ILs) in polymer solar cells (PSCs). A hybrid material, composed of antimony as the inorganic part and diaminopyridine as the organic part, is synthesized and described as a new material for application as the electron extraction layer (EEL) in PSCs and compared to the recently demonstrated hybrid materials using bismuth instead of antimony. The hybrid compound is solution-processed onto the photoactive layer based on a classical blend, which is composed of a PTB7-Th low band gap polymer as the donor mixed with PC70BM fullerene as the acceptor material. By using a regular device structure and an aluminum cathode, the solar cells exhibited a power conversion efficiency of 8.42%, equivalent to the reference device using ZnO nanocrystals as the IL, and strongly improved compared to the bismuth-based hybrid material. The processing of extraction layers up to a thickness of 80 nm of such hybrid material reveals that the change from bismuth to antimony has strongly improved the charge extraction and transport properties of the hybrid materials. Interestingly, nanocomposites made of the hybrid material mixed with ZnO nanocrystals in a 1:1 ratio further improved the electronic properties of the extraction layers, leading to a power conversion efficiency of 9.74%. This was addressed to a more closely packed morphology of the hybrid layer, leading to further improved electron extraction. It is important to note that these hybrid EELs, both pure and ZnO-doped, also greatly improved the stability of solar cells, both under dark storage in air and under lighting under an inert atmosphere compared to solar cells treated with ZnO intermediate layers.

6.
Langmuir ; 35(6): 2179-2187, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30433787

RESUMO

Plasmonic nanocomposites based on well-dispersed silver nanocubes in poly(vinylpyrrolidone) are presented that are solution-processed into layers of varying volume fractions of nanocubes. We show that the high-energy modes of the nanocubes are almost insensitive to plasmonic coupling within the nanocube assemblies, leading to a linear increase in light absorption in the UV region with the nanocube densities. Concerning the main dipolar resonance mode at 450 nm, it is strongly affected by the formation of these assemblies, leading to an increased absorption in the UV region as well as a large absorption band in the visible region. Simulations of the optical response of the nanocube assemblies as a function of nanocube spacing and electric field polarization reveal that optical features in the visible region are due to intercube couplings at short intercube distances and parallel electric field orientation. In contrast, the additional plasmonic band in the UV region has its origin in residual dipolar oscillations of the nanocubes in combination with weak dipolar coupling for both parallel and transversal field polarizations. The combination of these effects leads to an enlarged absorption band in the UV region with nearly perfect light absorption of 98.8% at a high silver volume fraction of 8% that is accompanied by a very weak specular reflection of only 0.28%. Although such perfect absorption is usually observed only when nanocubes are assembled on a gold surface, nearly perfect absorption herein is achieved on a large palette of substrates including glass, plastic, and cheap metals such as aluminum, making it a promising approach for solution-processed robust and cheap quasi-perfect absorption coatings.

7.
ACS Appl Mater Interfaces ; 10(20): 17309-17317, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29652470

RESUMO

Organic-inorganic hybrid materials composed of bismuth and diaminopyridine are studied as novel materials for electron extraction layers in polymer solar cells using regular device structures. The hybrid materials are solution processed on top of two different low band gap polymers (PTB7 or PTB7-Th) as donor materials mixed with fullerene PC70BM as the acceptor. The intercalation of the hybrid layer between the photoactive layer and the aluminum cathode leads to solar cells with a power conversion efficiency of 7.8% because of significant improvements in all photovoltaic parameters, that is, short-circuit current density, fill factor, and open-circuit voltage, similar to the reference devices using ZnO as the interfacial layer. However when using thick layers of such hybrid materials for electron extraction, only small losses in photocurrent density are observed in contrast to the reference material ZnO of pronounced losses because of optical spacer effects. Importantly, these hybrid electron extraction layers also strongly improve the device stability in air compared with solar cells processed with ZnO interlayers. Both results underline the high potential of this new class of hybrid materials as electron extraction materials toward robust processing of air stable organic solar cells.

8.
ACS Appl Mater Interfaces ; 10(4): 3874-3884, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29327577

RESUMO

The thermal stability of printed polymer solar cells at elevated temperatures needs to be improved to achieve high-throughput fabrication including annealing steps as well as long-term stability. During device processing, thermal annealing impacts both the organic photoactive layer, and the two interfacial layers make detailed studies of degradation mechanism delicate. A recently identified thermally stable poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]:[6,6]-phenyl-C71-butyric acid methyl ester (PTB7:PC70BM) blend as photoactive layer in combination with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as hole extraction layer is used here to focus on the impact of electron extraction layer (EEL) on the thermal stability of solar cells. Solar cells processed with densely packed ZnO nanoparticle layers still show 92% of the initial efficiency after constant annealing during 1 day at 140 °C, whereas partially covering ZnO layers as well as an evaporated calcium layer leads to performance losses of up to 30%. This demonstrates that the nature and morphology of EELs highly influence the thermal stability of the device. We extend our study to thermally unstable PTB7:[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) blends to highlight the impact of ZnO on the device degradation during annealing. Importantly, only 12% loss in photocurrent density is observed after annealing at 140 °C during 1 day when using closely packed ZnO. This is in stark contrast to literature and addressed here to the use of a stable double-sided confinement during thermal annealing. The underlying mechanism of the inhibition of photocurrent losses is revealed by electron microscopy imaging and spatially resolved spectroscopy. We found that the double-sided confinement suppresses extensive fullerene diffusion during the annealing step, but with still an increase in size and distance of the enriched donor and acceptor domains inside the photoactive layer by an average factor of 5. The later result in combination with comparably small photocurrent density losses indicates the existence of an efficient transport of minority charge carriers inside the donor and acceptor enriched phases in PTB7:PC60BM blends.

9.
Beilstein J Nanotechnol ; 8: 1065-1072, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685107

RESUMO

This work is focused on the study of the optical properties of silver nanostructures embedded in a polymer host matrix. The introduction of silver nanostructures in polymer thin films is assumed to result in layers having adaptable optical properties. Thin film layers with inclusions of differently shaped nanoparticles, such as nanospheres and nanoprisms, and of different sizes, are optically characterized. The nanoparticles are produced by a simple chemical synthesis at room temperature in water. The plasmonic resonance peaks of the different colloidal solutions range from 390 to 1300 nm. The non-absorbing, transparent polymer matrix poly(vinylpyrrolidone) (PVP) was chosen because of its suitable optical and chemical properties. The optical studies of the layers include spectrophotometry and spectroscopic ellipsometry measurements, which provide information about the reflection, transmission, absorption of the material as well as the complex optical indices, n and k. Finite difference time domain simulations of nanoparticles in thin film layers allow the visualization of the nanoparticle interactions or the electric field enhancement on and around the nanoparticles to complete the optical characterization. A simple analysis method is proposed to obtain the complex refractive index of nanospheres and nanoprisms in a polymer matrix.

10.
ACS Appl Mater Interfaces ; 9(20): 17256-17264, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28481109

RESUMO

Cathode interfacial layers, also called electron extraction layers (EELs), based on zinc oxide (ZnO) have been studied in polymer-blend solar cells toward optimization of the opto-electric properties. Bulk heterojunction solar cells based on poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) were realized in regular structure with all-solution-processed interlayers. A pair of commercially available surfactants, ethanolamine (EA) and ethylene glycol (EG), were used to modify the surface of ZnO nanoparticles (NPs) in alcohol-based dispersion. The influence of ZnO particle size was also studied by preparing dispersions of two NP diameters (6 versus 11 nm). Here, we show that performance improvement can be obtained in polymer solar cells via the use of solution-processed ZnO EELs based on surface-modified nanoparticles. By the optimizing of the ZnO dispersion, surfactant ratio, and the resulting morphology of EELs, PTB7/PC70BM solar cells with a power-conversion efficiency of 8.2% could be obtained using small sized EG-modified ZnO NPs that allow the clear enhancement of the performance of solution-processed photovoltaic devices compared to state-of-the-art ZnO-based cathode layers.

11.
ChemSusChem ; 9(21): 3062-3066, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27730752

RESUMO

Here, we have developed an organic photocathode for water reduction to H2 , delivering more than 1 mA cm-2 at 0 V versus RHE and above 3 mA cm-2 at -0.5 V versus RHE with moderate stability under neutral pH conditions. The initial competitive reduction of water to H2 and ZnO to metallic Zn is responsible for the dynamic behaviour of both photocurrent and Faradaic efficiency of the device, which reaches 100 % Faradaic efficiency after 90 min operation. In any case, outstanding stable H2 flow of approximately 2 µmol h-1 is measured over 1 h at 0 V versus RHE and at neutral pH, after equilibrium between the Zn2+ /Zn0 concentration in the AZO film is reached. This achievement opens new avenues for the development of allsolution-processed organic photoelectrochemical cells for the solar generation of H2 from sea water.


Assuntos
Hidrogênio/química , Processos Fotoquímicos , Águas Salinas/química , Concentração de Íons de Hidrogênio , Oxirredução , Luz Solar , Zinco/química
12.
ACS Appl Mater Interfaces ; 8(3): 1635-43, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26751271

RESUMO

Photostability of organic photovoltaic devices represents a key requirement for the commercialization of this technology. In this field, ZnO is one of the most attractive materials employed as an electron transport layer, and the investigation of its photostability is of particular interest. Indeed, oxygen is known to chemisorb on ZnO and can be released upon UV illumination. Therefore, a deep analysis of the UV/oxygen effects on working devices is relevant for the industrial production where the coating processes take place in air and oxygen/ZnO contact cannot be avoided. Here we investigate the light-soaking stability of inverted organic solar cells in which four different solution-processed ZnO-based nanoparticles were used as electron transport layers: (i) pristine ZnO, (ii) 0.03 at %, (iii) 0.37 at %, and (iv) 0.8 at % aluminum-doped AZO nanoparticles. The degradation of solar cells under prolonged illumination (40 h under 1 sun), in which the ZnO/AZO layers were processed in air or inert atmosphere, is studied. We demonstrate that the presence of oxygen during the ZnO/AZO processing is crucial for the photostability of the resulting solar cell. While devices based on undoped ZnO were particularly affected by degradation, we found that using AZO nanoparticles the losses in performance, due to the presence of oxygen, were partially or totally prevented depending on the Al doping level.

13.
ACS Nano ; 9(4): 3685-94, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25761847

RESUMO

Self-assembly (SA) of nanostructures has recently gained increasing interest. A clear understanding of the process is not straightforward since SA of nanoparticles is a complex multiscale phenomenon including different driving forces. Here, we study the SA between aluminum doped ZnO nanopyramids into couples by combining inorganic chemistry and advanced electron microscopy techniques with atomistic simulations. Our results show that the SA of the coupled nanopyramids is controlled first by morphology, as coupling only occurs in the case of pyramids with well-developed facets of the basal planes. The combination of electron microscopy and atomistic modeling reveals that the coupling is further driven by strong ligand-ligand interaction between the bases of the pyramids as dominant force, while screening effects due to Al doping or solvent as well as core-core interaction are only minor contributions. Our combined approach provides a deeper understanding of the complex interplay between the interactions at work in the coupled SA of ZnO nanopyramids.

14.
J Phys Chem Lett ; 5(12): 2126-30, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26270503

RESUMO

The growth of Pt-Pd nanoparticles from organometallic precursors is studied in situ in real time by HRTEM in a graphene oxide liquid cell. The reduction of the metal precursors is induced by the electron beam. During the growth, the particles rearrange their internal structure to form faceted single crystals. The growth is compatible with the Lifshitz-Slyozov-Wagner (LSW) mechanism in the limiting case of a reaction-limited process. The same particles are also synthesized ex situ by using a chemical reducing agent and observed in HRTEM.

15.
Beilstein J Nanotechnol ; 1: 108-18, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21977400

RESUMO

The results of the investigation of the structural and magnetic (static and dynamic) properties of an assembly of metallic Fe nanoparticles synthesized by an organometallic chemical method are described. These nanoparticles are embedded in a polymer, monodisperse, with a diameter below 2 nm, which corresponds to a number of around 200 atoms. The X-ray absorption near-edge structure and Mössbauer spectrum are characteristic of metallic Fe. The structural studies by wide angle X-ray scattering indicate an original polytetrahedral atomic arrangement similar to that of ß-Mn, characterized by a short-range order. The average magnetic moment per Fe atom is raised to 2.59 µ(B) (for comparison, bulk value of metallic Fe: 2.2 µ(B)). Even if the spontaneous magnetization decreases rapidly as compared to bulk materials, it remains enhanced even up to room temperature. The gyromagnetic ratio measured by ferromagnetic resonance is of the same order as that of bulk Fe, which allows us to conclude that the orbital and spin contributions increase at the same rate. A large magnetic anisotropy for metallic Fe has been measured up to (3.7 ± 1.0)·10(5) J/m(3). Precise analysis of the low temperature Mössbauer spectra, show a broad distribution of large hyperfine fields. The largest hyperfine fields display the largest isomer shifts. This indicates a progressive increase of the magnetic moment inside the particle from the core to the outer shell. The components corresponding to the large hyperfine fields with large isomer shifts are indeed characteristic of surface atoms.

16.
Small ; 3(3): 451-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17285643

RESUMO

Polytetrahedral NiFe nanoparticles with diameters of (2.8+/-0.3) nm have been obtained by hydrogenation of Ni[(COD)(2)] (COD=1,5-cyclooctadiene) and Fe[{N(SiMe(3))(2)}(2)] at 150 degrees C using stearic acid and hexadecylamine as stabilizing ligands. The nanoparticles are superparamagnetic at room temperature and display a blocking temperature of 17.6 K. Their anisotropy (2.7x10(5)J m(-3)) is determined to be more than two orders of magnitude higher than that of the bulk NiFe alloy (10(3)J m(-3)) and is close to that determined for Fe nanoparticles of the same size. Still, they display a magnetization of (1.69+/-0.05) mu(B) per metallic atom, identical to that of the bulk NiFe alloy. Combining the results from X-ray absorption and Mössbauer studies, we evidence a progressive enrichment in iron atoms from the core to the surface of the nanoparticles. These results are discussed in relation to both size and chemical effects. They show the main role played by the enriched Fe surface on the magnetic properties and address the feasibility of soft magnetic materials at the nanoscale.


Assuntos
Cristalização/métodos , Ferro/química , Magnetismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Níquel/química , Ligas/química , Dureza , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
17.
Inorg Chem ; 43(15): 4743-50, 2004 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-15257604

RESUMO

Two copper(II)-gadolinium(III) metal complexes of formula CuIIGdIIILX3 are reported. H2L stands for the Schiff base ligand obtained by condensation of 3,4-dimethoxysalicylaldehyde with ethylenediamine (complex 1) or 1R,2R-(+)-1,2-diphenylethylenediamine (complex 2). While 1 reveals a centrosymmetric crystal structure, 2 crystallizes in the noncentrosymmetric P212121 space group and exhibits an efficiency 0.3 time that of urea in second harmonic generation. Due to a trend for dissociation in solution, the molecular hyperpolarizabilities (beta) cannot be determined experimentally for 1 and 2. Nevertheless, the electric field induced second harmonic (EFISH) technique, in connection with spectroscopic data and a ZINDO semiempirical approach, leads to a beta value of -6.5 x 10(-30) cm5 esu(-1), for the related CuIIL monomers, as an indicative range of magnitude in all these Schiff base complexes. In addition, 1 and 2 exhibit a ferromagnetic coupling in solid state with J = 3.3 and 1.3 cm-1, respectively (J being the parameter of the exchange Hamiltonian = -JSCu x SGd).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...