Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Dis (Lond) ; : 1-9, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975876

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an airborne pathogen, but detection of infectious SARS-CoV-2 in air and in particular the introduction of the virus into the environment by different human expiratory manoeuvres is not well studied. OBJECTIVES: The aim of this study was to investigate the presence of SARS-CoV-2 in cough from coronavirus disease of 2019 (COVID-19) in-patients and to study contamination of the virus in the patient's environment. METHODS: Detection of SARS-CoV-2 in cough was analyzed by PCR, culture and imaging. Detection in cough was compared to presence of the virus in air and on surfaces from patient rooms. RESULTS: Twenty-five patients in 21 rooms were included in the study. SARS-CoV-2 RNA was found in cough aerosols from 16 out of 22 patients that produced voluntary cough. As demonstrated by plaque-forming unit assays, active virus was isolated from 11 of these 16 patients. Using mainly molecular detection, the virus was also found in air, on high-contact surfaces, and no-touch surfaces from the room of the COVID-19 patients. CONCLUSIONS: These results show that infectious SARS-CoV-2 circulating in air can originate from patient cough and should be considered against the risk of acquiring COVID-19 through inhalation.

4.
Indoor Air ; 32(3): e13023, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35347788

RESUMO

Transmission mechanisms for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are incompletely understood. In particular, aerosol transmission remains unclear, with viral detection in air and demonstration of its infection potential being actively investigated. To this end, we employed a novel electrostatic collector to sample air from rooms occupied by COVID-19 patients in a major Swedish hospital. Electrostatic air sampling in conjunction with extraction-free, reverse-transcriptase polymerase chain reaction (hid-RT-PCR) enabled detection of SARS-CoV-2 in air from patient rooms (9/22; 41%) and adjoining anterooms (10/22; 45%). Detection with hid-RT-PCR was concomitant with viral RNA presence on the surface of exhaust ventilation channels in patients and anterooms more than 2 m from the COVID-19 patient. Importantly, it was possible to detect active SARS-CoV-2 particles from room air, with a total of 496 plaque-forming units (PFUs) being isolated, establishing the presence of infectious, airborne SARS-CoV-2 in rooms occupied by COVID-19 patients. Our results support circulation of SARS-CoV-2 via aerosols and urge the revision of existing infection control frameworks to include airborne transmission.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Hospitais , Humanos , RNA Viral/análise , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...