Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5695, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171189

RESUMO

The human insulin receptor signalling system plays a critical role in glucose homeostasis. Insulin binding brings about extensive conformational change in the receptor extracellular region that in turn effects trans-activation of the intracellular tyrosine kinase domains and downstream signalling. Of particular therapeutic interest is whether insulin receptor signalling can be replicated by molecules other than insulin. Here, we present single-particle cryoEM structures that show how a 33-mer polypeptide unrelated to insulin can cross-link two sites on the receptor surface and direct the receptor into a signalling-active conformation. The 33-mer polypeptide engages the receptor by two helical binding motifs that are each potentially mimicable by small molecules. The resultant conformation of the receptor is distinct from-but related to-those in extant three-dimensional structures of the insulin-complexed receptor. Our findings thus illuminate unexplored pathways for controlling the signalling of the insulin receptor as well as opportunities for development of insulin mimetics.


Assuntos
Insulina , Receptor de Insulina , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fosforilação , Receptor de Insulina/metabolismo , Transdução de Sinais
2.
Structure ; 30(8): 1098-1108.e6, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35660159

RESUMO

Monomers of the insulin receptor and type 1 insulin-like growth factor receptor (IGF-1R) can combine stochastically to form heterodimeric hybrid receptors. These hybrid receptors display ligand binding and signaling properties that differ from those of the homodimeric receptors. Here, we describe the cryoelectron microscopy structure of such a hybrid receptor in complex with insulin-like growth factor I (IGF-I). The structure (ca. 3.7 Å resolution) displays a single IGF-I ligand, bound in a similar fashion to that seen for IGFs in complex with IGF-1R. The IGF-I ligand engages the first leucine-rich-repeat domain and cysteine-rich region of the IGF-1R monomer (rather than those of the insulin receptor monomer), consistent with the determinants for IGF binding residing in the IGF-1R cysteine-rich region. The structure broadens our understanding of this receptor family and assists in delineating the key structural motifs involved in binding their respective ligands.


Assuntos
Fator de Crescimento Insulin-Like I , Receptor de Insulina , Microscopia Crioeletrônica , Cisteína , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Receptores de Somatomedina
3.
Structure ; 28(7): 786-798.e6, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32459985

RESUMO

Human type 1 insulin-like growth factor receptor (IGF-1R) signals chiefly in response to the binding of insulin-like growth factor I. Relatively little is known about the role of insulin-like growth factor II signaling via IGF-1R, despite the affinity of insulin-like growth factor II for IGF-1R being within an order of magnitude of that of insulin-like growth factor I. Here, we describe the cryoelectron microscopy structure of insulin-like growth factor II bound to a leucine-zipper-stabilized IGF-1R ectodomain, determined in two conformations to a maximum average resolution of 3.2 Å. The two conformations differ in the relative separation of their respective points of membrane entry, and comparison with the structure of insulin-like growth factor I bound to IGF-1R reveals long-suspected differences in the way in which the critical C domain of the respective growth factors interact with IGF-1R.


Assuntos
Fator de Crescimento Insulin-Like II/química , Receptor IGF Tipo 1/química , Células 3T3 , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Humanos , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor IGF Tipo 1/metabolismo
4.
Nat Commun ; 9(1): 4420, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356040

RESUMO

Understanding the structural biology of the insulin receptor and how it signals is of key importance in the development of insulin analogs to treat diabetes. We report here a cryo-electron microscopy structure of a single insulin bound to a physiologically relevant, high-affinity version of the receptor ectodomain, the latter generated through attachment of C-terminal leucine zipper elements to overcome the conformational flexibility associated with ectodomain truncation. The resolution of the cryo-electron microscopy maps is 3.2 Å in the insulin-binding region and 4.2 Å in the membrane-proximal region. The structure reveals how the membrane proximal domains of the receptor come together to effect signalling and how insulin's negative cooperativity of binding likely arises. Our structure further provides insight into the high affinity of certain super-mitogenic insulins. Together, these findings provide a new platform for insulin analog investigation and design.


Assuntos
Receptor de Insulina/química , Receptor de Insulina/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia
5.
Nat Commun ; 9(1): 821, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483580

RESUMO

Human type 1 insulin-like growth factor receptor is a homodimeric receptor tyrosine kinase that signals into pathways directing normal cellular growth, differentiation and proliferation, with aberrant signalling implicated in cancer. Insulin-like growth factor binding is understood to relax conformational restraints within the homodimer, initiating transphosphorylation of the tyrosine kinase domains. However, no three-dimensional structures exist for the receptor ectodomain to inform atomic-level understanding of these events. Here, we present crystal structures of the ectodomain in apo form and in complex with insulin-like growth factor I, the latter obtained by crystal soaking. These structures not only provide a wealth of detail of the growth factor interaction with the receptor's primary ligand-binding site but also indicate that ligand binding separates receptor domains by a mechanism of induced fit. Our findings are of importance to the design of agents targeting IGF-1R and its partner protein, the human insulin receptor.


Assuntos
Fator de Crescimento Insulin-Like I/química , Receptores de Somatomedina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cristalografia por Raios X , Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Cinética , Ligantes , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
6.
J Biol Chem ; 291(30): 15473-81, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27281820

RESUMO

Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe(701) and Phe(705) The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor.


Assuntos
Materiais Biomiméticos/química , Insulina/química , Biblioteca de Peptídeos , Receptor de Insulina/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Humanos , Camundongos
7.
Structure ; 24(3): 469-76, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26853939

RESUMO

Insulin receptor (IR) signaling is critical to controlling nutrient uptake and metabolism. However, only a low-resolution (3.8 Å) structure currently exists for the IR ectodomain, with some segments ill-defined or unmodeled due to disorder. Here, we revise this structure using new diffraction data to 3.3 Å resolution that allow improved modeling of the N-linked glycans, the first and third fibronectin type III domains, and the insert domain. A novel haptic interactive molecular dynamics strategy was used to aid fitting to low-resolution electron density maps. The resulting model provides a foundation for investigation of structural transitions in IR upon ligand binding.


Assuntos
Antígenos CD/química , Antígenos CD/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Fibronectinas/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Structure ; 23(7): 1271-82, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26027733

RESUMO

The homodimeric insulin and type 1 insulin-like growth factor receptors (IR and IGF-1R) share a common architecture and each can bind all three ligands within the family: insulin and insulin-like growth factors I and II (IGF-I and IFG-II). The receptor monomers also assemble as heterodimers, the primary ligand-binding sites of which each comprise the first leucine-rich repeat domain (L1) of one receptor type and an α-chain C-terminal segment (αCT) of the second receptor type. We present here crystal structures of IGF-I bound to such a hybrid primary binding site and of a ligand-free version of an IR αCT peptide bound to an IR L1 plus cysteine-rich domain construct (IR310.T). These structures, refined at 3.0-Å resolution, prove congruent to respective existing structures of insulin-complexed IR310.T and the intact apo-IR ectodomain. As such, they provide key missing links in the emerging, but sparse, repertoire of structures defining the receptor family.


Assuntos
Fator de Crescimento Insulin-Like I/química , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
9.
Nature ; 493(7431): 241-5, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23302862

RESUMO

Insulin receptor signalling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation and survival. Insulin resistance contributes to the pathogenesis of type 2 diabetes mellitus and the onset of Alzheimer's disease; aberrant signalling occurs in diverse cancers, exacerbated by cross-talk with the homologous type 1 insulin-like growth factor receptor (IGF1R). Despite more than three decades of investigation, the three-dimensional structure of the insulin-insulin receptor complex has proved elusive, confounded by the complexity of producing the receptor protein. Here we present the first view, to our knowledge, of the interaction of insulin with its primary binding site on the insulin receptor, on the basis of four crystal structures of insulin bound to truncated insulin receptor constructs. The direct interaction of insulin with the first leucine-rich-repeat domain (L1) of insulin receptor is seen to be sparse, the hormone instead engaging the insulin receptor carboxy-terminal α-chain (αCT) segment, which is itself remodelled on the face of L1 upon insulin binding. Contact between insulin and L1 is restricted to insulin B-chain residues. The αCT segment displaces the B-chain C-terminal ß-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone-receptor recognition is novel within the broader family of receptor tyrosine kinases. We support these findings by photo-crosslinking data that place the suggested interactions into the context of the holoreceptor and by isothermal titration calorimetry data that dissect the hormone-insulin receptor interface. Together, our findings provide an explanation for a wealth of biochemical data from the insulin receptor and IGF1R systems relevant to the design of therapeutic insulin analogues.


Assuntos
Insulina/química , Insulina/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Animais , Sítios de Ligação , Calorimetria , Bovinos , Linhagem Celular , Cristalografia por Raios X , Humanos , Leucina/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
10.
J Mol Biol ; 394(5): 878-92, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-19835884

RESUMO

The insulin receptor (IR) and the homologous Type 1 insulin-like growth factor receptor (IGF-1R) are cell-surface tyrosine kinase receptors that effect signaling within the respective pathways of glucose metabolism and normal human growth. While ligand binding to these receptors is assumed to result in a structural transition within the receptor ectodomain that then effects signal transduction across the cell membrane, little is known about the molecular detail of these events. Presented here are small-angle X-ray scattering data obtained from the IR and IGF-1R ectodomains in solution. We show that, in solution, the ectodomains of IR and IGF-1R have a domain disposition that is very similar to that seen in the crystal structure of the ectodomain of IR, despite the constituent domains being in relatively sparse contact and potentially mobile. We also show that the IGF-1R ectodomain is capable of binding up to three molecules of IGF-1 in solution, with surprisingly little apparent change in relative domain disposition compared to the apo form. While the observed 3:1 ligand-binding stoichiometry appears to contradict earlier explanations of the absence of a bell-shaped dose-response curve for IGF-1R in ligand displacement assays, it is readily understood in the context of the harmonic oscillator model of the negative cooperativity of ligand binding to IGF-1R. Taken together, our findings suggest that the structural movements within these receptors upon ligand binding are small and are possibly limited to local rotation of domains.


Assuntos
Antígenos CD/química , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Animais , Antígenos CD/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Espalhamento a Baixo Ângulo
11.
Biochemistry ; 48(23): 5492-500, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19459609

RESUMO

The C-terminal segment of the insulin receptor (IR) alpha-chain plays a critical role in insulin binding. This 16-residue peptide together with the central beta-sheet of the receptor L1 domain forms one of the insulin binding surfaces of the IR monomer. Here we use isothermal titration calorimetry to assay directly the binding of the IR alphaCT peptide to an IR construct (IR485) consisting of the three N-terminal domains of the receptor monomer. Our measurements show further that the binding of the IR alphaCT peptide to IR485 competes with the binding of a prototypical "Site 1" insulin mimetic peptide to the same receptor fragment. The competitive nature of their binding appears to be reflected in a previously undetected sequence similarity between the IR alphaCT peptide and the Site 1 mimetic peptide. In contrast, a prototypical "Site 2" peptide has very limited affinity for IR485. Taken together, these results complement our recent observation that there is a possible structural relationship between these mimetic peptides and insulin itself. They also add support to the view that the segment of unexplained electron density lying on the surface of the central beta-sheet of the L1 domain in the IR ectodomain crystal structure arises from the IR alphaCT peptide. Finally, we show that mutation of the critical IR alphaCT peptide residue Phe714 to alanine does not affect the peptide's affinity for IR485 and conclude that the resultant loss of insulin binding with this mutation results from loss of interaction of the phenylalanine side chain with insulin.


Assuntos
Antígenos CD/química , Insulina/química , Peptídeos/química , Receptor de Insulina/química , Termodinâmica , Animais , Antígenos CD/metabolismo , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Humanos , Insulina/metabolismo , Ligantes , Peptídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...