Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 9: 742538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631664

RESUMO

Background: Concerns over the presence of the diketones 2,4 butanedione (DA) and 2,3 pentanedione (AP) in e-cigarettes arise from their potential to cause respiratory diseases. Their presence in e-liquids is a primary source, but they may potentially be generated by glycerol (VG) and propylene glycol (PG) when heated to produce aerosols. Factors leading to the presence of AP, DA and acetoin (AC) in e-cigarette aerosols were investigated. We quantified direct transfer from e-liquids, examined thermal degradation of major e-liquid constituents VG, PG and 1,3 propanediol (1,3 PD) and the potential for AC, AP and DA production from sugars and flavor additives when heated in e-cigarettes. Method: Transfers of AC, AP and DA from e-liquids to e-cigarette aerosols were quantified by comparing aerosol concentrations to e-liquid concentrations. Thermal generation from VG, PG or 1,3 PD e-liquids was investigated by measuring AC, AP and DA emissions as a function of temperature in an e-cigarette. Thermal generation of AC, AP and DA from sugars was examined by aerosolising e-liquids containing sucrose, fructose or glucose in an e-cigarette. Pyrolytic formation of AP and DA from a range of common flavors was assessed using flash pyrolysis techniques. Results: AC transfer efficiency was >90%, while AP and DA were transferred less efficiently (65%) indicating losses during aerosolisation. Quantifiable levels of DA were generated from VG and PG, and to a lesser extent 1,3 PD at coil temperatures >300°C. Above 350°C AP was generated from VG and 1,3 PD but not PG. AC was not generated from major constituents, although low levels were generated by thermal reduction of DA. Aerosols from e-liquids containing sucrose contained quantifiable (>6 ng/puff) levels of DA at all sucrose concentrations tested, with DA emissions increasing with increasing device power and concentration. 1% glucose, fructose or sucrose e-liquids gave comparable DA emissions. Furanose ring compounds also generate DA and AP when heated to 250°C. Conclusions: In addition to less than quantitative direct transfer from the e-liquid, DA and AP can be present in the e-cigarette aerosol due to thermal decomposition reactions of glycols, sugars and furanonse ring flavors under e-cigarette operating conditions.

2.
Regul Toxicol Pharmacol ; 107: 104423, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310846

RESUMO

The recent growth in e-cigarette use has presented many challenges to Public Health research, including understanding the potential for e-cigarettes to generate toxic aerosol constituents during use. Recent research has established that the way e-cigarettes are puffed influences the magnitude of emissions from these devices, with puff duration the dominant driving force. Standardised puffing machine methods are being developed to harmonise testing approaches across laboratories, but critical to their success is the degree with which they accurately reflect vapers real-world puffing behaviours (topography). Relatively limited data is available examining the way vapers puff, with significant inconsistencies between studies. Here we report the creation and analysis of a large database of public-domain vaping videos to establish e-cigarettes puffing behaviour in near natural settings. Over 300 videos containing 1200 puffing events from 252 vapers were obtained from social media sources, divided approximately equally amongst cigalike, Ego and Advanced Personal Vapouriser ("APV", also referred to as "boxmod") types of e-cigarettes. Analysis showed that similar mean puff durations were found for all three categories of vaping devices. This includes direct-to-lung as well as mouth-to-lung puffing behaviours. A 3 s puff duration, as used in the recently published ISO puffing standard ISO 20,768:2018, appears appropriate for average behaviours. However, the wide diversity of puffing durations observed amongst vapers means it may be challenging to identify a simple yet comprehensively representative single machine-puffing regimen for laboratory studies. A puff duration of around 5.6 s appears to represent 95th percentile puffing behaviours amongst vapers and may be an appropriate choice for scientists and regulators seeking an additional more intense puffing regime. A range of new behavioural patterns have been identified whose impact on aerosol exposure need to be considered. Public-domain video records of vapers provides valuable and accessible insights into real-world use behaviours. It is freely available, and constantly updated with new material, and therefore provides a valuable resource for scientists seeking to understand real-world vaping behaviours.


Assuntos
Vaping , Adulto , Aerossóis , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Humanos , Masculino , Fumantes , Mídias Sociais , Gravação de Videoteipe , Adulto Jovem
3.
Food Chem Toxicol ; 106(Pt A): 522-532, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28576286

RESUMO

Vapour products have demonstrated potential to be a lower-risk alternative to cigarettes. The present study describes a novel hybrid tobacco product that combines a warm aerosol stream generated by an electronic vaporisation mechanism with tobacco top flavour from cut tobacco. During operation, the aerosol stream released from the vapour cartomiser is passed through a bed of blended cut tobacco by the puffing flow, elevating the tobacco temperature and eluting volatile tobacco flavour components. A preliminary but comprehensive analysis of the aerosol composition of the hybrid tobacco product found that emissions were dominated by the control vapour formulation. In non-targeted chemical screening, no detectable difference in GC scans was observed between the hybrid tobacco product and the control vapour product. However, a sensorially elevated tobacco flavour was confirmed by a consumer sensory panel (P < 0.05). In a targeted analysis of 113 compounds, either identified by regulatory bodies as potential toxicants in cigarette smoke or formed from electronic vapour products, only 26 were quantified. The novel action of tobacco heating and liquid aerosolisation produced classes and levels of toxicants that were similar to those of the control vapour product, but much lower than those of a Kentucky 3R4F reference cigarette. For nine toxicants mandated by the WHO Study Group on Tobacco Product Regulation for reduction in cigarette emissions, the levels were 91%-99% lower per puff in the hybrid tobacco product aerosol than in 3R4F smoke. Overall, the novel hybrid tobacco product provides a sensorially enhanced tobacco flavour, but maintains a toxicant profile similar to its parent vapour product with relatively low levels of known cigarette smoke toxicants.


Assuntos
Aerossóis/química , Sistemas Eletrônicos de Liberação de Nicotina/instrumentação , Aromatizantes/química , Nicotiana/química , Adulto , Qualidade de Produtos para o Consumidor , Sistemas Eletrônicos de Liberação de Nicotina/métodos , Sistemas Eletrônicos de Liberação de Nicotina/normas , Humanos , Fumar
4.
Chem Res Toxicol ; 29(10): 1662-1678, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27641760

RESUMO

There is interest in the relative toxicities of emissions from electronic cigarettes and tobacco cigarettes. Lists of cigarette smoke priority toxicants have been developed to focus regulatory initiatives. However, a comprehensive assessment of e-cigarette chemical emissions including all tobacco smoke Harmful and Potentially Harmful Constituents, and additional toxic species reportedly present in e-cigarette emissions, is lacking. We examined 150 chemical emissions from an e-cigarette (Vype ePen), a reference tobacco cigarette (Ky3R4F), and laboratory air/method blanks. All measurements were conducted by a contract research laboratory using ISO 17025 accredited methods. The data show that it is essential to conduct laboratory air/method measurements when measuring e-cigarette emissions, owing to the combination of low emissions and the associated impact of laboratory background that can lead to false-positive results and overestimates. Of the 150 measurands examined in the e-cigarette aerosol, 104 were not detected and 21 were present due to laboratory background. Of the 25 detected aerosol constituents, 9 were present at levels too low to be quantified and 16 were generated in whole or in part by the e-cigarette. These comprised major e-liquid constituents (nicotine, propylene glycol, and glycerol), recognized impurities in Pharmacopoeia-quality nicotine, and eight thermal decomposition products of propylene glycol or glycerol. By contrast, approximately 100 measurands were detected in mainstream cigarette smoke. Depending on the regulatory list considered and the puffing regime used, the emissions of toxicants identified for regulation were from 82 to >99% lower on a per-puff basis from the e-cigarette compared with those from Ky3R4F. Thus, the aerosol from the e-cigarette is compositionally less complex than cigarette smoke and contains significantly lower levels of toxicants. These data demonstrate that e-cigarettes can be developed that offer the potential for substantially reduced exposure to cigarette toxicants. Further studies are required to establish whether the potential lower consumer exposure to these toxicants will result in tangible public health benefits.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Fumar , Produtos do Tabaco , Aerossóis/análise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...