Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 131: 17-29, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759902

RESUMO

Amelogenin (AMELX), the predominant matrix protein in enamel formation, contains a singular phosphorylation site at Serine 16 (S16) that greatly enhances AMELX's capacity to stabilize amorphous calcium phosphate (ACP) and inhibit its transformation to apatitic enamel crystals. To explore the potential role of AMELX phosphorylation in vivo, we developed a knock-in (KI) mouse model in which AMELX phosphorylation is prevented by substituting S16 with Ala (A). As anticipated, AMELXS16A KI mice displayed a severe phenotype characterized by weak hypoplastic enamel, absence of enamel rods, extensive ectopic calcifications, a greater rate of ACP transformation to apatitic crystals, and progressive cell pathology in enamel-forming cells (ameloblasts). In the present investigation, our focus was on understanding the mechanisms of action of phosphorylated AMELX in amelogenesis. We have hypothesized that the absence of AMELX phosphorylation would result in a loss of controlled mineralization during the secretory stage of amelogenesis, leading to an enhanced rate of enamel mineralization that causes enamel acidification due to excessive proton release. To test these hypotheses, we employed microcomputed tomography (µCT), colorimetric pH assessment, and Fourier Transform Infrared (FTIR) microspectroscopy of apical portions of mandibular incisors from 8-week old wildtype (WT) and KI mice. As hypothesized, µCT analyses demonstrated significantly higher rates of enamel mineral densification in KI mice during the secretory stage compared to the WT. Despite a greater rate of enamel densification, maximal KI enamel thickness increased at a significantly lower rate than that of the WT during the secretory stage of amelogenesis, reaching a thickness in mid-maturation that is approximately half that of the WT. pH assessments revealed a lower pH in secretory enamel in KI compared to WT mice, as hypothesized. FTIR findings further demonstrated that KI enamel is comprised of significantly greater amounts of acid phosphate compared to the WT, consistent with our pH assessments. Furthermore, FTIR microspectroscopy indicated a significantly higher mineral-to-organic ratio in KI enamel, as supported by µCT findings. Collectively, our current findings demonstrate that phosphorylated AMELX plays crucial mechanistic roles in regulating the rate of enamel mineral formation, and in maintaining physico-chemical homeostasis and the enamel growth pattern during early stages of amelogenesis.


Assuntos
Ameloblastos , Amelogênese , Amelogenina , Esmalte Dentário , Microtomografia por Raio-X , Animais , Amelogenina/metabolismo , Amelogenina/genética , Fosforilação , Esmalte Dentário/metabolismo , Esmalte Dentário/crescimento & desenvolvimento , Camundongos , Amelogênese/genética , Ameloblastos/metabolismo , Técnicas de Introdução de Genes , Fosfatos de Cálcio/metabolismo , Concentração de Íons de Hidrogênio
2.
Front Physiol ; 14: 1144712, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846326

RESUMO

Continuously growing mouse incisors are widely used to study amelogenesis, since all stages of this process (i.e., secretory, transition and maturation) are present in a spatially determined sequence at any given time. To study biological changes associated with enamel formation, it is important to develop reliable methods for collecting ameloblasts, the cells that regulate enamel formation, from different stages of amelogenesis. Micro-dissection, the key method for collecting distinct ameloblast populations from mouse incisors, relies on positions of molar teeth as landmarks for identifying critical stages of amelogenesis. However, the positions of mandibular incisors and their spatial relationships with molars change with age. Our goal was to identify with high precision these relationships throughout skeletal growth and in older, skeletally mature animals. Mandibles from 2, 4, 8, 12, 16, and 24-week-old, and 18-month-old C57BL/6J male mice, were collected and studied using micro-CT and histology to obtain incisal enamel mineralization profiles and to identify corresponding changes in ameloblast morphology during amelogenesis with respect to positions of molars. As reported here, we have found that throughout active skeletal growth (weeks 2-16) the apices of incisors and the onset of enamel mineralization move distally relative to molar teeth. The position of the transition stage also moves distally. To test the accuracy of the landmarks, we micro-dissected enamel epithelium from mandibular incisors of 12-week-old animals into five segments, including 1) secretory, 2) late secretory - transition - early maturation, 3) early maturation, 4) mid-maturation and 5) late maturation. Isolated segments were pooled and subjected to expression analyses of genes encoding key enamel matrix proteins (EMPs), Amelx, Enam, and Odam, using RT-qPCR. Amelx and Enam were strongly expressed during the secretory stage (segment 1), while their expression diminished during transition (segment 2) and ceased in maturation (segments 3, 4, and 5). In contrast, Odam's expression was very low during secretion and increased dramatically throughout transition and maturation stages. These expression profiles are consistent with the consensus understanding of enamel matrix proteins expression. Overall, our results demonstrate the high accuracy of our landmarking method and emphasize the importance of selecting age-appropriate landmarks for studies of amelogenesis in mouse incisors.

3.
Matrix Biol ; 111: 245-263, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820561

RESUMO

Amelogenesis imperfecta (AI) is an inherited developmental enamel defect affecting tooth masticatory function, esthetic appearance, and the well-being of patients. As one of the major enamel matrix proteins (EMPs), enamelin (ENAM) has three serines located in Ser-x-Glu (S-x-E) motifs, which are potential phosphorylation sites for the Golgi casein kinase FAM20C. Defects in FAM20C have similarly been associated with AI. In our previous study of EnamRgsc514 mice, the Glu57 in the S55-X56-E57 motif was mutated into Gly, which was expected to cause a phosphorylation failure of Ser55 because Ser55 cannot be recognized by FAM20C. The severe enamel defects in ENAMRgsc514 mice reminiscent of Enam-knockout mouse enamel suggested a potentially important role of Ser55 phosphorylation in ENAM function. However, the enamel defects and ENAM dysfunction may also be attributed to distinct physicochemical differences between Glu57 and Gly57. To clarify the significance of Ser55 phosphorylation to ENAM function, we generated two lines of Enam knock-in mice using CRISPR-Cas9 method to eliminate or mimic the phosphorylation state of Ser55 by substituting it with Ala55 or Asp55 (designated as S55A or S55D), respectively. The teeth of 6-day or 4-week-old mice were subjected to histology, micro-CT, SEM, TEM, immunohistochemistry, and mass spectrometry analyses to characterize the morphological, microstructural and proteomic changes in ameloblasts, enamel matrix and enamel rods. Our results showed that the enamel formation and EMP expression in S55D heterozygotes (Het) were less disturbed than those in S55A heterozygotes, while both homozygotes (Homo) had no mature enamel formation. Proteomic analysis revealed alterations of enamel matrix biosynthetic and mineralization processes in S55A Hets. Our present findings indicate that Asp55 substitution partially mimics the phosphorylation state of Ser55 in ENAM. Ser55 phosphorylation is essential for ENAM function during amelogenesis.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Amelogênese/genética , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Proteômica , Serina/metabolismo
4.
J Struct Biol ; 214(2): 107844, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35219810

RESUMO

Amelogenin, the most abundant enamel matrix protein, plays several critical roles in enamel formation. Importantly, we previously found that the singular phosphorylation site at Ser16 in amelogenin plays an essential role in amelogenesis. Studies of genetically knock-in (KI) modified mice in which Ser16 in amelogenin is substituted with Ala that prevents amelogenin phosphorylation, and in vitro mineralization experiments, have shown that phosphorylated amelogenin transiently stabilizes amorphous calcium phosphate (ACP), the initial mineral phase in forming enamel. Furthermore, KI mice exhibit dramatic differences in the enamel structure compared with wild type (WT) mice, including thinner enamel lacking enamel rods and ectopic surface calcifications. Here, we now demonstrate that amelogenin phosphorylation also affects the organization and composition of mature enamel mineral. We compared WT, KI, and heterozygous (HET) enamel and found that in the WT elongated crystals are co-oriented within each rod, however, their c-axes are not aligned with the rods' axes. In contrast, in rod-less KI enamel, crystalline c-axes are less co-oriented, with misorientation progressively increasing toward the enamel surface, which contains spherulites, with a morphology consistent with abiotic formation. Furthermore, we found significant differences in enamel hardness and carbonate content between the genotypes. ACP was also observed in the interrod of WT and HET enamel, and throughout aprismatic KI enamel. In conclusion, amelogenin phosphorylation plays crucial roles in controlling structural, crystallographic, mechanical, and compositional characteristics of dental enamel. Thus, loss of amelogenin phosphorylation leads to a reduction in the biological control over the enamel mineralization process.


Assuntos
Amelogênese , Amelogenina , Proteínas do Esmalte Dentário , Amelogênese/genética , Amelogenina/química , Animais , Proteínas do Esmalte Dentário/genética , Íons , Camundongos , Minerais , Fosforilação
5.
J Biol Chem ; 295(7): 1943-1959, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31919099

RESUMO

Dental enamel comprises interwoven arrays of extremely long and narrow crystals of carbonated hydroxyapatite called enamel rods. Amelogenin (AMELX) is the predominant extracellular enamel matrix protein and plays an essential role in enamel formation (amelogenesis). Previously, we have demonstrated that full-length AMELX forms higher-order supramolecular assemblies that regulate ordered mineralization in vitro, as observed in enamel rods. Phosphorylation of the sole AMELX phosphorylation site (Ser-16) in vitro greatly enhances its capacity to stabilize amorphous calcium phosphate (ACP), the first mineral phase formed in developing enamel, and prevents apatitic crystal formation. To test our hypothesis that AMELX phosphorylation is critical for amelogenesis, we generated and characterized a hemizygous knockin (KI) mouse model with a phosphorylation-defective Ser-16 to Ala-16 substitution in AMELX. Using EM analysis, we demonstrate that in the absence of phosphorylated AMELX, KI enamel lacks enamel rods, the hallmark component of mammalian enamel, and, unlike WT enamel, appears to be composed of less organized arrays of shorter crystals oriented normal to the dentinoenamel junction. KI enamel also exhibited hypoplasia and numerous surface defects, whereas heterozygous enamel displayed highly variable mosaic structures with both KI and WT features. Importantly, ACP-to-apatitic crystal transformation occurred significantly faster in KI enamel. Secretory KI ameloblasts also lacked Tomes' processes, consistent with the absence of enamel rods, and underwent progressive cell pathology throughout enamel development. In conclusion, AMELX phosphorylation plays critical mechanistic roles in regulating ACP-phase transformation and enamel crystal growth, and in maintaining ameloblast integrity and function during amelogenesis.


Assuntos
Amelogênese/genética , Amelogenina/genética , Fosfatos de Cálcio/metabolismo , Esmalte Dentário/crescimento & desenvolvimento , Animais , Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos , Modelos Animais , Fosforilação/genética
6.
J Oral Biosci ; 61(1): 43-54, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30929801

RESUMO

OBJECTIVES: To investigate potential functions of transforming growth factor-beta (TGF-ß) isoforms in maturation-stage ameloblasts during amelogenesis. METHODS: In vivo activation of TGF-ß was characterized by using matrix metalloproteinase 20 null (Mmp20-/-) and wild-type (Mmp20+/+) mice. Using mHAT9d cells cultured in the presence of each TGF-ß isoform, (1) cell proliferation was determined by MTS assay, (2) immunostaining with anti-cleaved caspase-3 monoclonal antibody was performed and apoptotic indices were measured, (3) gene expression was analyzed by RT-qPCR, and (4) the uptake of amelogenin into mHAT9d cells was directly observed using a fluorescence microscope. RESULTS: TGF-ß1 and TGF-ß3 were present in the enamel matrix of developing teeth which were activated by MMP20 in vivo. A genetic study revealed that the three TGF-ß isoforms upregulate kallikrein 4 (KLK4) mRNA levels but downregulate carbonic anhydrase II. Moreover, TGF-ß1 and TGF-ß2 significantly upregulated the mRNA level of amelotin, whereas TGF-ß3 dramatically downregulated the mRNA levels of odontogenic ameloblast-associated protein (ODAM), family with sequence similarity 83 member H (FAM83H), and alkaline phosphatase (ALP). Immunostaining analysis showed that the apoptosis of mHAT9d cells is induced by three TGF-ß isoforms, with TGF-ß3 being most effective. Both TGF-ß1 and TGF-ß3 induced endocytosis of amelogenin. CONCLUSIONS: We propose that TGF-ß is regulated in an isoform-specific manner to perform multiple biological functions such as gene expression related to the structure of basal lamina/ameloblasts, mineral ion transport, apoptosis, and endocytosis in maturation-stage ameloblasts.


Assuntos
Ameloblastos , Amelogênese , Metaloproteinase 20 da Matriz , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta3 , Amelogenina , Animais , Camundongos , Isoformas de Proteínas , Proteínas
7.
Sci Rep ; 8(1): 4450, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535349

RESUMO

Transforming growth factor-beta (TGF-ß) is critical for cell proliferation and differentiation in dental pulp. Here, we show the dynamic mechanisms of TGF-ß in porcine dental pulp, odontoblasts and dentin. The mRNA of latent TGF-ß1 and TGF-ß3 is predominantly expressed in odontoblasts, whereas the mRNA expression level of latent TGF-ß2 is high in dental pulp. TGF-ß1 is a major isoform of TGF-ß, and latent TGF-ß1, synthesized in dental pulp, is primarily activated by matrix metalloproteinase 11 (MMP11). Activated TGF-ß1 enhances the mRNA expression levels of MMP20 and full-length dentin sialophosphoprotein (DSPP) in dental pulp cells, coinciding with the induction of odontoblast differentiation. Latent TGF-ß1 synthesized in odontoblasts is primarily activated by MMP2 and MMP20 in both odontoblasts and dentin. The activity level of TGF-ß1 was reduced in the dentin of MMP20 null mice, although the amount of latent TGF-ß1 expression did not change between wild-type and MMP20 null mice. TGF-ß1 activity was reduced with the degradation of DSPP-derived proteins that occurs with ageing. We propose that to exert its multiple biological functions, TGF-ß1 is involved in a complicated dynamic interaction with matrix metalloproteinases (MMPs) and/or DSPP-derived proteins present in dental pulp, odontoblasts and dentin.


Assuntos
Polpa Dentária/citologia , Dentina/citologia , Odontoblastos/citologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética , Animais , Diferenciação Celular , Células Cultivadas , Polpa Dentária/metabolismo , Dentina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Metaloproteinase 11 da Matriz/metabolismo , Metaloproteinase 20 da Matriz/genética , Camundongos , Odontoblastos/metabolismo , Especificidade de Órgãos , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Suínos
9.
Front Physiol ; 8: 450, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28706493

RESUMO

Previously, we have shown that serine-16 phosphorylation in native full-length porcine amelogenin (P173) and the Leucine-Rich Amelogenin Peptide (LRAP(+P)), an alternative amelogenin splice product, affects protein assembly and mineralization in vitro. Notably, P173 and LRAP(+P) stabilize amorphous calcium phosphate (ACP) and inhibit hydroxyapatite (HA) formation, while non-phosphorylated counterparts (rP172, LRAP(-P)) guide the growth of ordered bundles of HA crystals. Based on these findings, we hypothesize that the phosphorylation of full-length amelogenin and LRAP induces conformational changes that critically affect its capacity to interact with forming calcium phosphate mineral phases. To test this hypothesis, we have utilized Fourier transform infrared spectroscopy (FTIR) to determine the secondary structure of LRAP(-P) and LRAP(+P) in the absence/presence of calcium and selected mineral phases relevant to amelogenesis; i.e., hydroxyapatite (HA: an enamel crystal prototype) and (ACP: an enamel crystal precursor phase). Aqueous solutions of LRAP(-P) or LRAP(+P) were prepared with or without 7.5 mM of CaCl2 at pH 7.4. FTIR spectra of each solution were obtained using attenuated total reflectance, and amide-I peaks were analyzed to provide secondary structure information. Secondary structures of LRAP(+P) and LRAP(-P) were similarly assessed following incubation with suspensions of HA and pyrophosphate-stabilized ACP. Amide I spectra of LRAP(-P) and LRAP(+P) were found to be distinct from each other in all cases. Spectra analyses showed that LRAP(-P) is comprised mostly of random coil and ß-sheet, while LRAP(+P) exhibits more ß-sheet and α-helix with little random coil. With added Ca, the random coil content increased in LRAP(-P), while LRAP(+P) exhibited a decrease in α-helix components. Incubation of LRAP(-P) with HA or ACP resulted in comparable increases in ß-sheet structure. Notably, however, LRAP(+P) secondary structure was more affected by ACP, primarily showing an increase in ß-sheet structure, compared to that observed with added HA. These collective findings indicate that phosphorylation induces unique secondary structural changes that may enhance the functional capacity of native phosphorylated amelogenins like LRAP to stabilize an ACP precursor phase during early stages of enamel mineral formation.

10.
Colloids Surf B Biointerfaces ; 148: 377-384, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27632699

RESUMO

Amelogenin, the predominant extracellular matrix protein secreted by ameloblasts, has been shown to be essential for proper tooth enamel formation. In this study, amelogenin adsorption to hydroxyapatite (HAP) surfaces, a prototype for enamel mineral, has been studied using a quartz crystal microbalance (QCM) to interrogate effects of protein phosphorylation and solution pH. Dynamic flow-based experiments were conducted at pH 7.4 and 8.0 using native phosphorylated porcine amelogenin (P173) and recombinant non-phosphorylated porcine amelogenin (rP172). Loading capacities (µmol/m2) on HAP surfaces were calculated under all conditions and adsorption affinities (Kad) were calculated when Langmuir isotherm conditions appeared to be met. At pH 8.0, binding characteristics were remarkably similar for the two proteins. However, at pH 7.4 a higher affinity and lower surface loading for the phosphorylated P173 was found compared to any other set of conditions. This suggests that phosphorylated P173 adopts a more extended conformation than non-phosphorylated full-length amelogenin, occupying a larger footprint on the HAP surface. This surface-induced structural difference may help explain why P173 is a more effective inhibitor of spontaneous HAP formation in vitro than rP172. Differences in the viscoelastic properties of P173 and rP172 in the adsorbed state were also observed, consistent with noted differences in HAP binding. These collective findings provide new insight into the important role of amelogenin phosphorylation in the mechanism by which amelogenin regulates enamel crystal formation.


Assuntos
Amelogenina/química , Durapatita/química , Proteínas Recombinantes/química , Soluções/química , Adsorção , Amelogenina/genética , Amelogenina/metabolismo , Animais , Ligação Competitiva , Esmalte Dentário/química , Esmalte Dentário/metabolismo , Durapatita/metabolismo , Elasticidade , Hidrodinâmica , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Força Atômica , Fosforilação , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo/métodos , Proteínas Recombinantes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Suínos , Viscosidade
11.
Dent Mater J ; 35(2): 216-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27041011

RESUMO

The dissolution behaviors of octacalcium phosphate (OCP), ß-tricalcium phosphate (ß-TCP), and hydroxyapatite (HA) were compared by implanting the materials in rat subcutaneous pouches for 8 weeks using a filter chamber or immersing them in simulated body fluid (SBF) or Tris-HCl buffer for 2 weeks at pH 7.4 and 37(o)C. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis were conducted on these materials. Degree of supersaturation (DS) in the two solutions immersed with each calcium phosphate material was calculated from their chemical compositions. The results showed that OCP partially converted to apatitic crystals, while ß-TCP and HA remained unchanged after the implantation. The DS of the SBF solution remained slightly supersaturated with respect to OCP and ß-TCP, but slightly undersaturated in the Tris-HCl buffer. These findings suggest that previously reported OCP and ß-TCP biodegradation could be induced through cell-mediated osteoclastic resorption rather than a simple dissolution process.


Assuntos
Fosfatos de Cálcio , Durapatita , Animais , Apatitas , Líquidos Corporais , Microscopia Eletrônica de Varredura , Ratos , Solubilidade , Difração de Raios X
12.
Hum Mol Genet ; 24(8): 2330-48, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25556186

RESUMO

T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1(cKO)) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1(cKO) mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS.


Assuntos
Proliferação de Células , Síndrome de DiGeorge/metabolismo , Ossos Faciais/metabolismo , MicroRNAs/metabolismo , Proteínas com Domínio T/metabolismo , Dente/metabolismo , Animais , Anormalidades Craniofaciais , Síndrome de DiGeorge/embriologia , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/fisiopatologia , Ossos Faciais/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , MicroRNAs/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas com Domínio T/genética , Dente/embriologia
13.
Front Physiol ; 5: 339, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309443

RESUMO

Vertebrate mineralized tissues, i.e., enamel, dentin, cementum, and bone, have unique hierarchical structures and chemical compositions. Although these tissues are similarly comprised of a crystalline calcium apatite mineral phase and a protein component, they differ with respect to crystal size and shape, level and distribution of trace mineral ions, the nature of the proteins present, and their relative proportions of mineral and protein components. Despite apparent differences, mineralized tissues are similarly derived by highly concerted extracellular processes involving matrix proteins, proteases, and mineral ion fluxes that collectively regulate the nucleation, growth and organization of forming mineral crystals. Nature, however, provides multiple ways to control the onset, rate, location, and organization of mineral deposits in developing mineralized tissues. Although our knowledge is quite limited in some of these areas, recent evidence suggests that hard tissue formation is, in part, controlled through the regulation of specific molecules that inhibit the mineralization process. This paper addresses the role of mineralization inhibitors in the regulation of biological mineralization with emphasis on the relevance of current findings to the process of amelogenesis. Mineralization inhibitors can also serve to maintain driving forces for calcium phosphate precipitation and prevent unwanted mineralization. Recent evidence shows that native phosphorylated amelogenins have the capacity to prevent mineralization through the stabilization of an amorphous calcium phosphate precursor phase, as observed in vitro and in developing teeth. Based on present findings, the authors propose that the transformation of initially formed amorphous mineral deposits to enamel crystals is an active process associated with the enzymatic processing of amelogenins. Such processing may serve to control both initial enamel crystal formation and subsequent maturation.

14.
Connect Tissue Res ; 55 Suppl 1: 21-4, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25158174

RESUMO

Our previous in vitro studies have shown that recombinant full-length porcine amelogenin rP172 can transiently stabilize amorphous calcium phosphate (ACP) and uniquely guide the formation of well-aligned bundles of hydroxyapatite (HA) crystals, as seen in the secretory stage of amelogenesis. This functional capacity is dependent on the hydrophilic C-terminal domain of full-length amelogenin. However, we have also found that native phosphorylated (single S-16 site) forms of full-length (P173) and C-terminal cleaved (P148) amelogenins can stabilize ACP for > 2 d and prevent HA formation. The present study was carried out to test the hypothesis that, at reduced concentrations, native full-length P173 also has the capacity to guide ordered HA formation. The effect of P148 and P173 concentrations (0.2-2.0 mg/ml) on the rate of spontaneous calcium phosphate precipitation was monitored via changes in solution pH, while mineral phases formed were assessed using TEM. At higher P173 concentrations (1.0-2.0 mg/ml), limited mineral formation occurred and only ACP nanoparticles were observed during a 48 h period. However, at 0.4 mg/ml P173, a predominance of organized bundles of linear, needle-like HA crystals were observed. At 0.2 mg/ml of P173, limited quantities of less organized HA crystals were found. Although P148 similarly stabilized ACP, it did not guide ordered HA formation, like P173. Hence, the establishment of the hierarchical enamel structure during secretory stage amelogenesis may be regulated by the partial removal of full-length amelogenin via MMP20 proteolysis, while predominant amelogenin degradation products, like P148, serve to prevent uncontrolled mineral formation.


Assuntos
Amelogenina/metabolismo , Fosfatos de Cálcio/metabolismo , Durapatita/metabolismo , Amelogenina/química , Animais , Microscopia Eletrônica de Transmissão , Fosforilação , Proteólise , Suínos
15.
J Struct Biol ; 183(2): 250-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23707542

RESUMO

Amelogenin, the major extracellular enamel matrix protein, plays a critical role in regulating the growth and organization of enamel. Assembly and mineralization of full-length native (P173) and recombinant (rP172) porcine amelogenins were studied by cryogenic Transmission Electron Microscopy (cryoTEM). The cryoTEM revealed that both native and recombinant porcine amelogenins undergo step-wise self-assembly. Although the overall structural organization of P173 and rP172 oligomers was similar and resembled oligomers of murine recombinant amelogenin rM179, there were subtle differences suggesting that a single phosphorylated serine present in P173 might affect amelogenin self-assembly. Our mineralization studies demonstrated that both P173 and rP172 oligomers stabilize initial mineral clusters. Importantly, however, rP172 regulated the organization of initial mineral clusters into linear chains and guided the formation of parallel arrays of elongated mineral particles, which are the hallmark of enamel structural organization. These results are similar to those obtained previously using full-length recombinant murine amelogenin (Fang et al., 2011a). In contrast to that seen with rP172, phosphorylated P173 strongly inhibits mineralization for extended periods of time. We propose that these differences might be due to the differences in the structural organization and charge distribution between P173 and rP172. Overall our studies indicate that self-assembly of amelogenin and the mechanisms of its control over mineralization might be universal across different mammalian species. Our data also provide new insight into the effect of phosphorylation on amelogenin self-assembly and its regulation of mineralization.


Assuntos
Amelogenina/metabolismo , Calcificação Fisiológica , Coroa do Dente/metabolismo , Animais , Proteínas do Esmalte Dentário , Microscopia Eletrônica de Transmissão , Fosforilação , Suínos , Coroa do Dente/química
16.
J Periodontol ; 84(1): 117-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22414259

RESUMO

BACKGROUND: Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. METHODS: NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. RESULTS: Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. CONCLUSION: NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.


Assuntos
Fosfatos de Cálcio , Terapia Genética/métodos , Vetores Genéticos , Nanopartículas , Doenças Periodontais/terapia , Proteínas Proto-Oncogênicas c-sis/genética , Animais , Materiais Biocompatíveis/síntese química , Fosfatos de Cálcio/síntese química , Fosfatos de Cálcio/química , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Regulação da Expressão Gênica/genética , Vetores Genéticos/síntese química , Proteínas de Fluorescência Verde , Substâncias Luminescentes , Camundongos , Células NIH 3T3 , Nanopartículas/química , Plasmídeos/síntese química , Sais de Tetrazólio , Tiazóis , Transfecção/métodos
17.
J Biol Chem ; 288(4): 2485-500, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23229549

RESUMO

LHX6 is a LIM-homeobox transcription factor expressed during embryogenesis; however, the molecular mechanisms regulating LHX6 transcriptional activities are unknown. LHX6 and the PITX2 homeodomain transcription factor have overlapping expression patterns during tooth and craniofacial development, and in this report, we demonstrate new transcriptional mechanisms for these factors. PITX2 and LHX6 are co-expressed in the oral and dental epithelium and epithelial cell lines. Lhx6 expression is increased in Pitx2c transgenic mice and decreased in Pitx2 null mice. PITX2 activates endogenous Lhx6 expression and the Lhx6 promoter, whereas LHX6 represses its promoter activity. Chromatin immunoprecipitation experiments reveal endogenous PITX2 binding to the Lhx6 promoter. LHX6 directly interacts with PITX2 to inhibit PITX2 transcriptional activities and activation of multiple promoters. Bimolecular fluorescence complementation assays reveal an LHX6·PITX2 nuclear interaction in living cells. LHX6 has a dominant repressive effect on the PITX2 synergistic activation with LEF-1 and ß-catenin co-factors. Thus, LHX6 acts as a transcriptional repressor and represses the expression of several genes involved in odontogenesis. We have identified specific defects in incisor, molar, mandible, bone, and root development and late stage enamel formation in Lhx6 null mice. Amelogenin and ameloblastin expression is reduced and/or delayed in the Lhx6 null mice, potentially resulting from defects in dentin deposition and ameloblast differentiation. Our results demonstrate that LHX6 regulates cell proliferation in the cervical loop and promotes cell differentiation in the anterior region of the incisor. We demonstrate new molecular mechanisms for LHX6 and an interaction with PITX2 for normal craniofacial and tooth development.


Assuntos
Regulação da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Proteínas com Homeodomínio LIM/química , Proteínas do Tecido Nervoso/química , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Amelogenina/metabolismo , Animais , Células CHO , Cricetinae , Células HEK293 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Humanos , Mandíbula/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura/métodos , Modelos Biológicos , Odontogênese , Dente/embriologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Homeobox PITX2
18.
Proc Natl Acad Sci U S A ; 108(34): 14097-102, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21825148

RESUMO

Enamel is a highly organized hierarchical nanocomposite, which consists of parallel arrays of elongated apatitic crystallites forming an intricate three-dimensional microstructure. Amelogenin, the major extracellular matrix protein of dental enamel, regulates the formation of these crystalline arrays via cooperative interactions with forming mineral phase. Using cryoelectron microscopy, we demonstrate that amelogenin undergoes stepwise hierarchical self-assembly. Furthermore, our results indicate that interactions between amelogenin hydrophilic C-terminal telopeptides are essential for oligomer formation and for subsequent steps of hierarchical self-assembly. We further show that amelogenin assemblies stabilize mineral prenucleation clusters and guide their arrangement into linear chains that organize as parallel arrays. The prenucleation clusters subsequently fuse together to form needle-shaped mineral particles, leading to the formation of bundles of crystallites, the hallmark structural organization of the forming enamel at the nanoscale. These findings provide unique insight into the regulation of biological mineralization by specialized macromolecules and an inspiration for bottom-up strategies for the materials design.


Assuntos
Amelogenina/metabolismo , Calcificação Fisiológica/fisiologia , Nanopartículas/química , Amelogenina/ultraestrutura , Animais , Fosfatos de Cálcio/metabolismo , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador , Camundongos
19.
Cells Tissues Organs ; 194(2-4): 166-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21597263

RESUMO

Cryogenic transmission electron microscopy (cryo-EM) was used to explore the self-assembly of recombinant murine amelogenin (rM179) in vitro. Our cryo-EM data showed that amelogenin self-assembly is a strongly pH-dependent process. At pH 4.4 the main fraction of the protein exists in a monomeric form, although some peculiar structures consisting of chains of monomers were also observed. At pH 5.8 large nanospheres comprising ring-like structures ~50 nm in diameter were the most abundant particle class. Similarly, at pH 8.0 amelogenins self-assembled into ring-like oligomers of different sizes, which subsequently assembled into nanospheres 15-20 nm in diameter. Furthermore, at pH 7.2, which is close to a physiological pH, branched chains of nanospheres were observed. Our results show that amelogenin assembly is a multistep hierarchical process and provides new insight into the control of enamel mineralization.


Assuntos
Amelogenina/ultraestrutura , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão/métodos , Amelogenina/química , Animais , Concentração de Íons de Hidrogênio , Camundongos , Nanosferas/ultraestrutura , Estrutura Quaternária de Proteína , Fatores de Tempo
20.
J Struct Biol ; 173(2): 250-60, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21074619

RESUMO

The self-assembly of the predominant extracellular enamel matrix protein amelogenin plays an essential role in regulating the growth and organization of enamel mineral during early stages of dental enamel formation. The present study describes the effect of the phosphorylation of a single site on the full-length native porcine amelogenin P173 on self-assembly and on the regulation of spontaneous calcium phosphate formation in vitro. Studies were also conducted using recombinant non-phosphorylated (rP172) porcine amelogenin, along with the most abundant amelogenin cleavage product (P148) and its recombinant form (rP147). Amelogenin self-assembly was assessed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Using these approaches, we have shown that self-assembly of each amelogenin is very sensitive to pH and appears to be affected by both hydrophilic and hydrophobic interactions. Furthermore, our results suggest that the phosphorylation of the full-length porcine amelogenin P173 has a small but potentially important effect on its higher-order self-assembly into chain-like structures under physiological conditions of pH, temperature, and ionic strength. Although phosphorylation has a subtle effect on the higher-order assembly of full-length amelogenin, native phosphorylated P173 was found to stabilize amorphous calcium phosphate for extended periods of time, in sharp contrast to previous findings using non-phosphorylated rP172. The biological relevance of these findings is discussed.


Assuntos
Amelogenina/química , Fosfatos de Cálcio/química , Animais , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...