Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22274046

RESUMO

Venous thromboembolism (VTE), comprising both deep vein thrombosis (DVT) and pulmonary embolism (PE) is a common, multi-causal disease with potentially serious short- and long-term complications. In clinical practice, there is a need for improved plasma biomarker-based tools for VTE diagnosis and risk prediction. We used multiplex proteomics profiling to screen plasma from patients with suspected acute VTE, and a case-control study of patients followed up after ending anticoagulant treatment for a first VTE. With replication in 5 independent studies, together totalling 1137 patients and 1272 controls, we identify Complement Factor H Related Protein (CFHR5), a regulator of the alternative pathway of complement activation, as a novel VTE associated plasma biomarker. Using GWAS analysis of 2967 individuals we identified a genome-wide significant pQTL signal on chr1q31.3 associated with CFHR5 levels. We showed that higher CFHR5 levels are associated with increased thrombin generation in patient plasma and that recombinant CFHR5 enhances platelet activation in vitro. Thrombotic complications are a frequent feature of COVID-19; in hospitalised patients we found CFHR5 levels at baseline were associated with short-time prognosis of disease severity, defined as maximum level of respiratory support needed during hospital stay. Our results indicate a clinically important role for regulation of the alternative pathway of complement activation in the pathogenesis of VTE and pulmonary complications in acute COVID-19. Thus, CFHR5 is a potential diagnostic and/or risk predictive plasma biomarker reflecting underlying pathology in VTE and acute COVID-19.

2.
Sci Total Environ ; 801: 149580, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34411789

RESUMO

Biochar applications can have important implications for many of the soil functions upon which agroecosystems rely, particularly regarding organic carbon storage. This study evaluated the impacts of adding a highly aromatic gasification biochar at different rates (0, 12 and 50 t ha-1) to a barley crop on the provision of crucial soil functions (carbon sequestration, water content, greenhouse gas emissions, nutrient cycling, soil food web functioning, and food production). After natural ageing in the field for six years, a wide range of soil properties representative of the studied soil functions were measured and integrated into a soil quality index. Results showed that C sequestration increased with biochar rate (23 and 68% higher than in the control for the 12 and 50 t biochar ha-1 treatments, respectively). Water content was enhanced at the 50 t ha-1 treatment depending on the sampling date. Despite biochar additions neither abating nor increasing CO2 equivalent emissions (carbon dioxide plus nitrous oxide and methane), the system shifted from being a methane sink (-0.017 ± 0.01 mg CH4-C m-2 h-1 at the 12 t ha-1 treatment), to a net source (0.025 ± 0.02 mg CH4-C m-2 h-1 at the 50 t ha-1 treatment). In addition, biochar ageing provoked a loss of nitrate mitigation potential, and indeed ammonium production was stimulated at the 50 t ha-1 rate. The 50 t ha-1 treatment also adversely affected nematode and collembolan functional diversity. Lastly, biochar did not affect barley yield. The results of the soil quality index indicated that no biochar treatment provided more benefits to our agricultural soil, and, although the 50 t ha-1 treatment increased C sequestration, this was potentially offset by its harmful effects on soil faunal communities. Therefore, application of this biochar at high rates should be avoided to prevent risks to soil biological communities.


Assuntos
Gases de Efeito Estufa , Solo , Agricultura , Dióxido de Carbono/análise , Carvão Vegetal , Metano/análise , Óxido Nitroso/análise
3.
J Am Podiatr Med Assoc ; 104(3): 233-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24901581

RESUMO

BACKGROUND: Dermatomycoses are a group of pathologic abnormalities frequently seen in clinical practice, and their prevalence has increased in recent decades. Diagnostic confirmation of mycotic infection in nails is essential because there are several pathologic conditions with similar clinical manifestations. The classical method for confirming the presence of fungus in nail is microbiological culture and the identification of morphological structures by microscopy. METHODS: We devised a nested polymerase chain reaction (PCR) that amplifies specific DNA sequences of dermatophyte fungus that is notably faster than the 3 to 4 weeks that the traditional procedure takes. We compared this new technique and the conventional plate culture method in 225 nail samples. The results were subjected to statistical analysis. RESULTS: We found concordance in 78.2% of the samples analyzed by the two methods and increased sensitivity when simultaneously using the two methods to analyze clinical samples. Now we can confirm the presence of dermatophyte fungus in most of the positive samples in just 24 hours, and we have to wait for the result of culture only in negative PCR cases. CONCLUSIONS: Although this PCR cannot, at present, substitute for the traditional culture method in the detection of dermatophyte infection of the nails, it can be used as a complementary technique because its main advantage lies in the significant reduction of time used for diagnosis, in addition to higher sensitivity.


Assuntos
Arthrodermataceae/isolamento & purificação , Onicomicose/diagnóstico , Reação em Cadeia da Polimerase/métodos , DNA Fúngico/análise , Feminino , Dermatoses do Pé/diagnóstico , Dermatoses da Mão/diagnóstico , Humanos , Masculino , Reação em Cadeia da Polimerase/estatística & dados numéricos , Melhoria de Qualidade , Reprodutibilidade dos Testes , Estudos de Amostragem , Sensibilidade e Especificidade , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...