Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 498(1): 72-78, 2018 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29477841

RESUMO

Zscan4 is an early embryonic gene cluster expressed in mouse embryonic stem and induced pluripotent stem cells where it plays critical roles in genomic stability, telomere maintenance, and pluripotency. Zscan4 expression is transient, and characterized by infrequent high expression peaks that are quickly down-regulated, suggesting its expression is tightly controlled. However, little is known about the protein degradation pathway responsible for regulating the human ZSCAN4 protein levels. In this study we determine for the first time the ZSCAN4 protein half-life and degradation pathway, including key factors involved in the process, responsible for the regulation of ZSCAN4 stability. We demonstrate lysine 48 specific polyubiquitination and subsequent proteasome dependent degradation of ZSCAN4, which may explain how this key factor is efficiently cleared from the cells. Importantly, our data indicate an interaction between ZSCAN4 and the E3 ubiquitin ligase RNF20. Moreover, our results show that RNF20 depletion by gene knockdown does not affect ZSCAN4 transcription levels, but instead results in increased ZSCAN4 protein levels. Further, RNF20 depletion stabilizes the ZSCAN4 protein half-life, suggesting that RNF20 negatively regulates ZSCAN4 stability. Due to the significant cellular functions of ZSCAN4, our results have important implications in telomere regulation, stem cell biology, and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , Meia-Vida , Humanos , Lisina/metabolismo , Poliubiquitina/metabolismo , Estabilidade Proteica , Proteólise , Ubiquitinação
2.
Nat Med ; 13(12): 1504-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18037895

RESUMO

Metastasis is the primary cause of mortality from cancer, but the mechanisms leading to metastasis are poorly understood. In particular, relatively little is known about metastasis in cancers of mesenchymal origins, which are known as sarcomas. Approximately ten proteins have been characterized as 'metastasis suppressors', but how these proteins function and are regulated is, in general, not well understood. Gp78 (also known as AMFR or RNF45) is a RING finger E3 ubiquitin ligase that is integral to the endoplasmic reticulum (ER) and involved in ER-associated degradation (ERAD) of diverse substrates. Here we report that expression of gp78 has a causal role in the metastasis of an aggressive human sarcoma and that this prometastatic activity requires the E3 activity of gp78. Further, gp78 associates with and targets the transmembrane metastasis suppressor, KAI1 (also known as CD82), for degradation. Suppression of gp78 increases KAI1 abundance and reduces the metastatic potential of tumor cells, an effect that is largely blocked by concomitant suppression of KAI1. An inverse relationship between these proteins was confirmed in a human sarcoma tissue microarray. Whereas most previous efforts have focused on genetic mechanisms for the loss of metastasis suppressor genes, our results provide new evidence for post-translational downregulation of a metastasis suppressor by its ubiquitin ligase, resulting in abrogation of its metastasis-suppressing effects.


Assuntos
Proteína Kangai-1/metabolismo , Proteínas/química , Receptores de Citocinas/fisiologia , Sarcoma/patologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Humanos , Mesoderma/metabolismo , Camundongos , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Domínios RING Finger , Receptores do Fator Autócrino de Motilidade , Receptores de Citocinas/genética , Transfecção , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Anticancer Res ; 22(3): 1433-44, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12168820

RESUMO

Adrenomedullin (AM) is a hypotensive polypeptide that has been shown to stimulate cyclic AMP and intracellular free Ca2+ agents that are known to induce expression of proto-oncogenes, in various cell types. Transforming growth factor-beta 1 (TGF-beta1) is a multifunctional polypeptide that regulates proliferation, differentiation and cell cycle progression in both normal and malignant epithelial cells. The diverse biological actions of AM and TGF-beta1 may be related to their capacities to initiate different genomic programs in target cells via the induction of expression of multiple genes including early response genes and proto-oncogenes. AM, TGF-beta1 and phorbol-12-myristate-13-acetate (PMA) exert both positive and negative effects on mitogenesis. The effects of AM, TGF-beta1 and PMA were examined in human non-small cell lung cancer (NSCLC) cells. AM caused an increase in its mRNA transcript that peaked by 6 hours and persisted to 24 hours. While expression of TGF-beta1 mRNA was not affected by AM in these cells, the mRNAs for TGF-beta1 and TGF-beta3 decreased by 3 hours. In contrast, TGF-beta1 had no effect on expression of AM mRNA. Interestingly, PMA caused an increase in AM and TGF-beta1 mRNAs in NSCLC cells. While both TGF-beta1 and PMA caused a transient increase in expression of the mRNAs for early response genes including c-fos, c-jun and egr-1 that peaked by 1 hour following treatment, the increase in expression of these mRNAs following treatment with AM peaked only after 3-6 hours. Western blotting analysis showed increases in the levels of c-jun protein following treatment with AM, TGF-beta1 and PMA. The increase in c-jun protein from treatment with AM occurred 10 hours after that from TGF-beta1 and PMA. Activator protein 1 (AP-1) DNA binding activity was also demonstrated to increase following treatment with AM, TGF-beta1 and PMA, with the increase in AP-1 DNA binding activity following AM treatment occurring 10 hours later than that from TGF-beta1 and PMA treatment. These data show that AM can regulate expression of its mRNA transcript in NSCLC cells. Our study suggests that NSCLC cells are important targets of AM and TGF-beta1 and that AM and TGF-beta1 may regulate activities in these malignant lung cells through differential induction of various early response genes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Neoplasias Pulmonares/genética , Peptídeos/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Adrenomedulina , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Genes Precoces/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Acetato de Tetradecanoilforbol/farmacologia , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1 , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...